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VIRTUALLY GEOMETRICALLY FINITE
MAPPING CLASS GROUPS OF 3-MANIFOLDS

DARRYL MCCULLOUGH

Abstract

If M is a compact orientable irreducible sufficiently large 3-manifold,
then the mapping class group %?(M) contains a subgroup of finite index
which is the fundamental group of a finite aspherical CW-complex. If in
addition the boundary of M is incompressible, then βf(M) contains a
subgroup of finite index which is a duality group. For many cases, the
virtual cohomological dimension of β?(M) is calculated.

0. Introduction

The 3-manifolds considered in this work are compact, orientable, irre-
ducible, and sufficiently large. If in addition such a manifold is closed or
has incompressible boundary, we say that it is Haken.

We are concerned with the mapping class groups of these 3-manifolds.
We consider two "finiteness" properties that a group Γ may enjoy:

(1) Γ is of type FL; that is, there is a finite resolution of the trivial
Γ-module Z by finitely generated free ZΓ-modules.

(2) Γ is a duality group (over Z) that is, there is a (right) ZΓ-module
C such that for some nonnegative integer n there are natural isomor-
phisms Hk{T\A) = Hn_k(T\C®ΊjA) for all k and all ZΓ-modules A.

In (2), n is called the dimension of the duality group. For (1) our
reference is [35] and for (2) it is [2] (see also [1]).

When Γ is finitely presented, properties (1) and (2) have topological
interpretations which we discuss in § 1 along with other preliminaries. Both
properties easily imply that the cohomological dimension of Γ is finite.
For duality groups the cohomological dimension is equal to the dimension
as a duality group.

We say that Γ is of type VFL (respectively, a virtual duality group) if
there is a subgroup of finite index in Γ which is of type FL (respectively,
which is a duality group). The virtual cohomological dimension (see [35]) is
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the cohomological dimension of any torsion-free subgroup of finite index,
if such a subgroup exists. This is independent of the choice of subgroup.

It has long been known that the mapping class groups of 2-manifolds
(of finite type) are finitely presented; this was first proved by McCool [27].
Work of other authors, notably Harvey [16], [17] later showed that they
are of type VFL, and in recent work Harer [14] has proved that they are
virtual duality groups.

In the present work these results are extended to 3-manifolds. Precisely,
we prove

Theorem. Let M be a compact orientable irreducible sufficiently large
^manifold. Then the mapping class group %?\M) is finitely presented and
is of type VFL. If M is Haken, then βf(M) is a virtual duality group.

The first seven sections of this paper prove the Theorem as follows.
The characteristic submanifold theory due to Johannson [21] and Jaco

and Shalen [20] shows that Haken 3-manifolds consist of invariant (up to
isotopy) pieces which are either Seifert fibered, I-fibered, or "simple"; the
latter have finite mapping class groups [21] and are negligible when consid-
ering virtual properties of βf(M). For a Seifert fibered piece Σ with orbit
surface F, the mapping class group is studied in §3. Apart from a few ex-
ceptional cases which can be handled explicitly, the orientation-preserving
mapping class group ^ . ( Σ ) is isomorphic to the group of orientation-
preserving fiber-preserving mapping classes β?/(Σ). From [21, Proposi-
tions 25.2 and 25.3], excepting some more cases, there is an exact sequence

1 -> H{ (F, ΘF) - XT* (Σ) - <T* (F) - 1

in which W(F) is a subgroup of finite index in βf(F'), where F1 is the
result of removing from F the points which correspond to exceptional or-
bits of Σ. The kernel Hχ(F, dF) is isomorphic to the group of "vertical"
mapping classes that map each fiber to itself. Work of Harer [14], which
we extend in §2 to nonorientable 2-manifolds, shows that β?*(F) is a
virtual duality group, and the intersection of the vertical mapping classes
with a certain subgroup of finite index in βf(Σ) is a finitely generated
free abelian group. This proves the Theorem for the Seifert fibered case.
For I-bundles, the mapping class group is essentially the same as the map-
ping class group of the orbit surface, and the Theorem follows from the
2-dimensional version.

For the general case of incompressible boundary, considered in §4, there
is a subgroup of finite index in %*(M) which maps onto the product of
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(certain subgroups of) the mapping class groups of the components of the
characteristic submanifold of M, with kernel the finitely generated abelian
subgroup generated by Dehn twists about the components of the frontier
of the characteristic submanifold. Somewhat surprisingly, this kernel can
contain torsion, and some effort is required to find a subgroup of finite
index in %"(M) that avoids this torsion. These ideas combine to yield the
Theorem in the Haken case.

In the case of compressible boundary, there is a third kind of char-
acteristic piece called a product-with-handles, studied in [3], [28]. For a
product-with-handles V, there is a simplicial complex L in which the
vertices are the isotopy classes of essential compressing discs in V, and a
collection of vertices spans a simplex if and only if the isotopy classes can
be represented by a collection of discs in V which are pairwise disjoint.
We prove in §5 that L is a finite-dimensional contractible complex admit-
ting a simplicial action of W{V) with finite quotient. The result of cutting
a product-with-handles along a set of compressing discs is a collection of
products-with-handles of lower complexity; this enables us in §6 to analyze
the stabilizers of simplices in L inductively, obtaining enough information
to establish that βf(V) is finitely-presented and virtually of type FL. The
proof of the Theorem for manifolds with compressible boundary is given
in §7. It is based on induction on the number of compressible boundary
components, with the induction starting from the Haken case.

For the cases when the boundary of M is compressible I do not know
in general whether %?(M) is a virtual duality group. In §8, we use very
special facts about the genus 2 orientable handlebody V2 to prove that
3?(V2) is a virtual duality group of dimension 3 .

In §9, we calculate the virtual cohomological dimension of the mapping
class groups for the Haken case, and give bounds for it when M is a
handlebody or a product-with-handles.

It follows from work of Johannson [21] and Hemion [18] (see the dis-
cussion in [40]) that β?(M) is finitely presented in the Haken case. For
the case of compressible boundary, finite generation was proved in [28],
and finite presentation was proved by R. Kramer (unpublished) for han-
dlebodies and by P. Grasse [10], [11] in general. The present work is an
outgrowth of the discussions which led to the latter.

I am grateful to Geoffrey Mess for help in understanding the mapping
class groups of 2-manifolds, and to the referee for suggesting improve-
ments to the original manuscript. Also, I acknowledge the unpublished
paper [23] as a source of some of the ideas used in §§5 and 8.
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1. Preliminaries

Let Aχ, A2, , An , B be possibly empty subspaces of a PL manifold
M. By the mapping class group ^(M, Aχ, A2, , An relB) we mean
the group of path components of the group of homeomorphisms

Homeo (M, Aχ, A2, , Λπ τelB) = {h \h (At) = A{

for 1 < / < n and h\B = \άB) .

A "plus" subscript, as in β^(M), indicates the subgroup of orientation-
preserving classes if M is orientable, while for nonorientable M,

There seems to be some discrepancy in terminology of the literature,
with many (perhaps most) authors referring to %f(M) as the homeotopy
group and to the subgroup of orientation-preserving classes as the map-
ping class group. We will sometimes use the (redundant, for us) terminol-
ogy "full mapping class group" when the presence of orientation-reversing
classes may have significance.

It is known that every 2- or 3-dimensional manifold admits unique PL
and differentiable structures, and moreover that the inclusions from the
diffeomorphism group into the group of PL homeomorphisms, and from
the latter into the group of all homeomorphisms, are homotopy equiva-
lences. This allows us to move rather freely between the three categories
as dictated by convenience, and we do so without explicit reselection of
notation.

For any manifold M, there is a homomorphism Φ from β?(M) to the
group Out(πj(Af)) of outer automorphisms of the fundamental group of
M, defined by sending the isotopy class of h to the outer automorphism
represented by the induced automorphism Λ#: πχ(M) —• πx(M). For low-
dimensional manifolds, Φ gives a great deal of information about βf(M).
For example, if M is a closed 2-manifold other than the 2-sphere, it is
well known that Φ is an isomorphism. For closed Haken 3-manifolds,
Waldhausen [39] proved that Φ is an isomorphism, while for Haken 3-
manifolds with boundary, the kernel of Φ is nontrivial only when M is
an I-bundle, in which case it is of order 2, generated by reflection in the
I-fibers, and the image is as large as the fundamental group allows—it is
the outer automorphisms that take the image of the fundamental group of
each boundary component to a conjugate of the image of the fundamental
group of a boundary component (these are called the outer automorphisms
that preserve the peripheral structure).
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Although these results are quite useful, it is difficult to extract informa-
tion about Out(πj(Af)) by algebraic methods. For example, it is far from
evident algebraically that Out(7rj(Af)) is even finitely generated. Thus, our
results provide otherwise inaccessible information about Out(π1(M)).

In the introduction, we gave algebraic definitions for the terms FL and
duality group. There are useful topological interpretations for these prop-
erties.

Theorem 1.1. Let Γ be a finitely presented group.
(a) Γ is of type FL if and only if there is a finite CW-complex which is

a K(Γ, 1).
(b) Suppose X is a compact m-dimensional manifold with nonempty

boundary which is a K(Γ, 1). Let X denote the universal cover of X.
Then Γ is a duality group if and only if for some q the (reduced) homology
groups H.(dX) are zero for i ψ q and Hq(dX) is torsion-free, in which
case the dimension ofT is m - q - 1.

Part (a) is proved in [35, Proposition 10] and part (b) in [2].
A group which admits a finite Λ^(Γ, 1) complex is sometimes called a

geometrically finite group.
The following examples will appear frequently.
Examples 1.2. (a) If G is finite, then G is a virtual duality group of

type VFL of dimension zero.
(b) If G is free and finitely generated, then G is a duality group of

type FL of dimension 1.

(c) If G = Zk, then G is a duality group of type FL of dimension k .
(d) If G = GL(k, Z), then G is a virtual duality group of type VFL of

dimension k(k - l)/2 .
Proof (a) is obvious since the trivial group has finite index in G. Parts

(b) and (c) follow by applying Theorem 1.1 when X is a 2-disc with holes
and the product of /c-dimensional torus and an interval. Part (d) is from
[4].

We will make frequent use of the following facts.
Lemma 1.3. Let Y1 be a subgroup of finite index in Γ.
(a) If Γ is of type FL, then so is Γ'.
(b) If Γ is a duality group, then so is Ϋ.
(c) If Y1 is a duality group and Γ is torsion free, then Γ is a duality

group.
Part (a) is [35, Proposition 5(c)], and (b) and (c) are [2, Theorems 3.2

and 3.3]. To my knowledge the analogue of (c) for groups of type FL is
still unknown (see [35]).
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We will frequently exploit the behavior of groups of type VFL and
virtual duality groups under extensions.

Lemma 1.4. Let 1 —• ,4 —• 5 —• C —• 1 be an exact sequence of groups.
(a) If A and C are finitely presented, then so is B.
(b) // A is of type FL and C is of type VFL, then B is of type VFL.
(c) If A is a duality group and C is a virtual duality group, then B is

a virtual duality group, and dim(2?) = dim(v4) + dim(C).
Proof Result (a) is well known. For (b) and (c), by pulling back the ex-

tension to a finite index subgroup of C, we may assume that C is of type
FL or is a duality group. Then, the result follows from [35, Proposition
6(b); 2, Theorem 3.5].

Parts (b) and (c) of Lemma 1.4 do not extend to the case when A has
the virtual property. Examples may be found in [31].

2. Mapping class groups of 2-manifolds

Let F be a connected 2-manifold with r boundary circles and s punc-
tures. If F is orientable with orientable genus g, then the group of
orientation-preserving mapping classes that take each puncture to itself
and restrict to the identity on each component of dF is denoted by Γ^ r.
If F is nonorientable with nonorientable genus g (i.e, F is obtained
from a connected sum of g projective planes by removing r open discs
and s points), then the group of mapping classes that take each puncture
to itself and restrict to the identity on each component of dF is denoted
by Λ^ r. These have finite index in ^{F rel dF). It is sometimes con-
venient to regard some of the punctures as distinguished points fixed by
all homeomorphisms and isotopies.

In [14], John Harer proved the following theorem.
Theorem. Γ^ r is a finitely presented virtual duality group of type VFL.

If 2g + r + s > 2, then the dimension of Γ*g r is d(g, r, s), where
d(g, 0, 0) = 4 g - 5 , d(g, r, s) = 4g + 2r + s-4 if g > 0 and r + s>0,
and d(0, r, s) = 2r + s - 3.

In this section, relying heavily on Harer's ideas, we prove

Theorem 2.1. As is a finitely presented virtual duality group of type

VFL. Ifg + r + s>2, then the dimension of As

g r is 2g - 5 if r = s = 0

and is 2g + 2r + s - 4 // r + s > 0.
If χ(N) > 0, then TV is either a projective plane or a compact or open

Mόbius band, whose mapping class groups all have order 1, or a Klein
bottle, whose mapping class group has order 4 [25], and Theorem 2.1
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is immediate. So in the remainder of this section we will assume that
χ(N)<0.

Since Λ* r is an extension of a free abelian group (of rank exactly r
when g + r + s > 2) by the group Λ^+5

0, the proof of Theorem 2.1 is easily
reduced to the case r = 0. During some portions of the proof, however,
it will be necessary to consider bounded surfaces.

To fix notation, assume that TV is nonorientable with nonorientable
genus g, has s punctures, and r boundary components. Let p: N —• TV
denote the orientable double cover of N with covering transformation τ .
Since each boundary component of N is an orientation-preserving loop,
TV has 2r boundary components, and 25* punctures. The (orientable)
genus g of JV equals g - 1. Let & denote the full mapping class group
of N, and ^ the subgroup of orientation-preserving classes. Finally, let
%? denote the full mapping class group of N. To prove Theorem 2.1, it is
necessary to adapt a considerable portion of [14] to the nonorientable case.
The discussion will be broken down into three subsections. In §2.1, the
mapping class group of N is identified with the stabilizer, under the action
of 2f on the Teichmuller space F of N, of the subspace of &~ fixed by
the covering involution τ . In §2.2, we extend Harer's ideal triangulation of
Teichmuller space to the nonorientable case; the fact that the Teichmuller
space for the nonorientable case can be identified with the subcomplex
fixed by τ acting on the Teichmuller space of the orientable double cover
leads to an easy proof of the crucial fact that the addition of the ideal points
of this triangulation yields a space which is still contractible. The third and
final subsection uses Harvey's bonification of Teichmuller space; a trick
allows us to see that the intersection of that bonification (constructed as a
subspace of Teichmuller space) with the fixed-point set of τ has compact
quotient under the action of its stabilizer, which will allow Theorem 1.1 (b)
to be applied once the boundary has been analyzed. The analysis of this
boundary follows Harer's approach, and completes the third subsection
and the proof of Theorem 2.1. ^

2.1. The imbedding of ^ in ^ . Let jfs

2r denote the Teichmuller
space (= space of all marked complete finite-area hyperbolic structures with
totally geodesic boundary, up to isotopy) of N. Now %? acts (on the left)
properly discontinuously as isometries (with respect to the
Teichmuller metric) on ^\r> Although this action is often only con-
sidered for orientation-preserving mapping classes, the definition of the
action in terms of pulling back hyperbolic metrics (see [9]) applies to
orientation-reversing classes. Considering Fenchel-Nielsen coordinates,
(see, for example, [15, Chapter 1, §2]) using a τ-equivariant pair-of-pants
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decomposition of the orientable double cover shows that the fixed-point
set of (τ) is a Euclidean (in fact, it is totally geodesic) subspace 9^ which
can be identified with the Teichmϋller space of N, and has dimension
3g - 3 + 3r + 2s = 3g - 6 + 3r + 2s.

The first step is to identify %? with the stabilizer of ^ under the action

of ZT+ . Let j % denote {(A) e ^\(h)(^) = <Tτ} . Define Ψ: & -> F+ by

letting Ψ((/)) be (/), where / is the unique orientation-preserving lift

of / to N. Since both fτ and τf are orientation-reversing lifts of / ,

they are equal. Therefore if x e ^ 9 we have (τ)(f)x = (f)(τ)x = (j)x,

so (/} G J%. It is clear that Ψ is a homomorphism.

Lemma 2.1.1. Ψ: %? —• %fχ is an isomorphism.

Proof. Let (h) e %?. By isotopy, we may assume that h fixes a base-

point of N and preserves the local orientation there; then the orientation-

preserving lift h will also preserve the basepoint of N (which we assume

to be chosen in the preimage of the basepoint of N). If (h) = (1^),

then Λ# = l π ~ in Out(πχ(N)). We may change h by an isotopy to

ensure that A# == 1 ~ in Aut(π1(7V)). Choose an orientation-reversing

element y of π{(N). Then h#(y) = yz for some z e p#π{(N). But for

all g ep#π{(N), we have ygy~ι = h#(ygy~ι) -yzgz~xy~x, hence z is
central in pnπχ(N). Since we are assuming χ(N) <0, π{(N) is centerless

and therefore z = 1. Thus /z# = l π ( 7 V ), so Λ is isotopic to 1^ , showing

that Ψ is injective.

Now suppose that g € %?τ. Then for all x G ^ , w e have {τ){g)x =
(g)x, so (g~ τg)x = Λ: . Using this information, we will produce a home-
omorphism G of N whose lift G is isotopic to g, thereby showing that
Ψ is surjective. We may regard TV in a standard position in R 3, symmet-
ric with respect to the origin, intersecting the x-axis in a finite number of
points and the yz-plane in a set C which is a circle (when g is even) or
two circles (when g is odd) in such a way that τ is the restriction of the
map sending (a, b, c) to (-a, -b, -c), and the "hyperelliptic" involu-
tion ζ is the restriction of a rotation through angle π about the x-axis.
Note that ζ commutes with τ . A hyperbolic structure x on N can be
chosen so that its stabilizer under the action of 2? is the group of order 4
generated by (τ) and (ζ) (in fact, in most cases it can be chosen so that
(τ) generates the stabilizer; in the remaining cases, such as g = 2 and
r = s = 0, the hyperelliptic symmetry cannot be avoided). Since (^τ^" 1)
is orientation-reversing and fixes x, it must equal either (τ) or (τζ).
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But the fixed-point set of τζ is C, while the fixed-point set of gτg~~ι

is empty, so τζ and gτg~ι are not equivalent involutions. By Theorem
6.1 of [37], isotopic involutions of a closed orientable surface must be
equivalent. Therefore (g~lτg) = (τ), so g#lτ#g# = τ# in Out(πχ(N)).
It follows from the theory of group extensions that there is an automor-
phism G§ of nχ(N) that restricts to g# on the subgroup p#πχ(N), but
in our case we can easily give a direct construction of G# as follows.
Choose any y e πχ(N) - πχ(N) then g#lμ(y)g# = μ(y)μ(c) for some
c E πχ(N), where μ(y) denotes conjugation by y. Define G#\π ~. = g#

and G#(y) = yg#(c~λ). A computation shows that G# is an isomorphism.
Now <7# preserves the peripheral structure of N, so is induced by some
homeomorphism G of N, and G induces g# so is isotopic to g. This
shows that Ψ is surjective and completes the proof of Lemma 2.1.1.

2.2. The complex B(A). Harer's approach makes use of an ideal tri-
angulation of Teichmuller space contained in a complex called A(A). The
definition of A(A) given in §1 of [14] applies equally well to nonorientable
surfaces, to wit: given a surface S, orientable or not, with s punctures and
r boundary components, define a similar complex B(A) as follows. Let
{P\, P2 > * *' > Ps}

 b e a collection of distinguished points in S -dS. For
Aχ = {pχ,- ,pm}9 m < s, and Δ2 = {qχ, q2, , qn} a set of points
in ΘS, containing at least one point in each boundary component of S,
put Δ = Δj U Δ 2 . Assume that Δ is nonempty. Put P = {pm+ι, , Ps}
and let So = S - P so that So has m distinguished points and s - m
punctures.

A rank k arc-system is the (ambient) isotopy class [α 0, aχ, , ak]
of a collection of arcs in SQ between two points of Δ and loops in So

based at points of Δ such that
(1) at Π aj; c A for distinct / and / , and
(2) for each component G of the surface obtained by splitting So along

(J α/., the Euler characteristic of the double of G along dG-A is negative.
A cell complex B(A) is formed by taking a fc-simplex (α0, ••• , ak)

for each rank k arc-system in S and identifying (β0, , βjj) as a face
of (a0, , ak) whenever {[β0], , [βfr c {[α0], , [ak]} . If 5 is
orientable with genus g, then B(A) is (6g - 6 + 3r + 25 + m + « - 1)-
dimensional, while if 5 is nonorientable with genus g, then 2?(Δ) is
(3<§ r-6-h3r + 25 + m-l-A2- 1 )-dimensional.

The appropriate group Γ^ r or Λ^ r acts simplicially on B(A).

An arc-system (i.e., a vertex of B(A)) is said tô /z// 5* if every compo-
nent of the complement of (|J α )uΔ in So is topologically a disc or a disc
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punctured once at a point of P. The full subcomplex of B(A) spanned
by vertices which do not fill S is denoted by ^ ( Δ ) ^ .

Specializing to our situation, let Δ be a collection of points in N, as
described above, and let Δ be the preimage of Δ in N. Define <9g2s

2r(Δ)

to be the space of all pairs (x, X), where x is a point in ^ \ r and λ
is the projective class of a collection of positive weights on the 2m + In
points of Δ, topologized as the product of ^ \ r with an open simplex

of dimension 2m + 2n — 1. The full mapping class group J%* of N acts
properly discontinuously on ZΓ~ 2r(^) u s i n S the standard action in the first
factor and the permutation action in the second.

Let B = B(Δ) and A = B{A). There is an imbedding of B into A
defined by sending an arc-system to its preimage. Notice that the preimage
of A^ is precisely B^ . Obviously, the image of B is contained in the
subcomplex fixed by τ conversely, if an arc-system is preserved up to
isotopy by τ , then it is easy to show that it is isotopic to a τ-invariant arc-
system (deform the arcs to have minimal length in a τ-invariant hyperbolic
structure), hence the image of B is precisely the subcomplex fixed by τ .

We have the following result from [14].

Theorem 2.2.1. For N, there is a %? -equivariant homeomorphism from
^%r(A) toA-A^.

The proof is given in [14] (there, the restricted mapping class group
Γ2g 2r is used, but all constructions are equivariant with respect to the
action of the full mapping class group).

Because of the equivariance, the product of the fixed-point set of τ
acting on the Teichmuller space with the open (m + n - l)-simplex of
invariant projective weights is carried to B — B^ , yielding

Corollary 2.2.2. B - B^ is contractible.

In order to prove that B is contractible, we make use of another of
Harer's results. In the first barycentric subdivision A of A, define Y
to be the full subcomplex of A0 whose vertices are families [aQ, , ak]
which fill up S, i.e., which have no face in A^ . As observed in §2 of [14],
Y° is the first barycentric subdivision of a regular cell complex Y . This
is a subcomplex of the dual cell complex to A it has a vertex for each
maximal arc-system which fills up S, an edge for each arc-system which
can be completed to a maximal family by the addition of one arc (neces-
sarily in two ways, yielding maximal families which are the endpoints of
the edge), and so on. From Theorem 2.1 of [14] we have
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Theorem 2.2.3. There exists an equivariant deformation retraction from
A0 to Y°, which provides an equivariant homotopy equivalence between
A°-Al andY0.

In [14], the equivariance is only stated for the action of Γ?5

 2r, but the
proof shows equivariance for the action of the full mapping class group.
Consequently, in our particular case, where (B, 5^) is imbedded natu-
rally as the fixed-point set under the action of τ on (A, A^), the defor-
mation carries B onto YnB . This lies in B - B^ , which is contractible
by Corollary 2.2.2. Therefore we have

Corollary 2.2.4. B(A) is contractible.
2.3. The bordification of Teichmuller space. Assume for now that r = 0

(and hence n = 0). Let Γ = Γ25

 0 and Γτ = Γ n ^ .
Although we could obtain the finite presentation and VFL properties of

Λ^ r using an equivariant spine for the action of Γτ on ^ , we need a
manifold bordification of !Γτ with compact quotient under the action of
Λ in order to apply Theorem l.l(b). (Harer constructs such a manifold as
a neighborhood of the spine for Teichmuller space when F is orientable
and r + s > 0, but we need Harvey's bordification for the case r = s = 0
anyway, so will not make use of Harer's construction.) To this end, we
now recall some facts from [15, Chapter 3, §2]. For ε sufficiently small
so that for any hyperbolic structure on N, all simple closed geodesies of
length < ε are disjoint, define W£ to be the subspace of ^ 2 Q consisting of
the hyperbolic structures in which every essential simple closed curve has
length > ε . It is a codimension-zero smooth submanifold with corners of
^ 2 5

0 , invariant under the action of Γ, and WJT is compact. There is an

^-equivariant (although stated in [15] only for Γ25

 Q) flow that provides

a deformation of ^ \ onto Wε - d Wε, and We can be identified with

Harvey's [16], [17] bordification of ^ 2 5

0 . Since the flow is equivariant, it
deforms J^τ onto ^ Π (We - dΪVe) which is therefore contractible.

Lemma 2.3.1. There is a subgroup A of finite index Γτ such that
^ Wε)/A is a compact aspherical manifold.

Proof. Let Γj be a torsion-free subgroup of finite index in Γ replacing

by Γj Π τTχτ~x, we may assume that τ normalizes T{. Let Λ =
Π ΓT then τ normalizes Λ as well. Therefore «9£ Π Wg is invariant

under Λ, so ( « ^ n ^ ) / A maps into the compact manifold WJTχ . To
deduce that («5̂ Π W&)/K is a compact manifold, we shall show that this
map is an imbedding. Now Λ acts freely, properly discontinuously, and
isometrically on ^ Π Wε, so the quotient («9̂ π We)/A is a compact smooth
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manifold with corners. Since τ normalizes Γj , it induces an isometric
involution τ on WJYχ, whose fixed-point set must be a submanifold.
But <¥ζΓ\We is the fixed-point set of a lift of τ to Wε, so the quotient of
<^Γ\Wε by its stabilizer Λ imbeds onto a component of the fixed-point
set of τ . This completes the proof.

Since W /̂Λ is a compact aspherical manifold whose fundamental group
is isomorphic to a subgroup of finite index in Γ τ , we have shown that Λ^ 0

(and hence, as remarked at the start of the proof of Theorem 2.1, Λ* r)
is finitely presented and of type VFL.

To complete the proof of Theorem 2.1, we will show that the boundary
of ^ Π Wε is homotopy equivalent to a wedge of spheres of the same
dimension. For any 2-manifold F of finite type having (orientable or
nonorientable) genus g, define a simplicial complex Ys

g by taking as a k-
simplex each isotopy class of k + 1 pairwise disjoint simple closed curves
C o , Cj, , Ck such that no component of F - \Jk

i=0 Ci has nonnegative
Euler characteristic. When F is orientable, Ys is equal to the complex
Zs of [14]. When F is nonorientable, the dimension of Ys

σ is 2g + s-4.

As explained in [17] and [12, Chapter 3, §2(iii)], the complex Y2* pa-

rametrizes the boundary of Harvey's bonification of ^ 5

0 . The points in

the simplex ([Co, C{, ••• , Ck]) parametrize the Teichmϋller spaces of de-

generate hyperbolic structures on N in which the geodesies in the isotopy

classes of C o , C{, , Ck have been pinched to points. Consequently,

d Wε is equivariantly homotopy equivalent to 7 ? s .

In our situation there is a natural way to imbed Ys in γ}s. Consider a

(/c-h/)-simplex ([AQ, Aχ, ,Ak, Bk+{, , Bk+ι]) in Ys

g , with notation

selected so that the At are 1-sided loops in iV and the B. are 2-sided.

The preimage of each A{ in N is a single loop A\, while the preimage

of each Bj consists of a pair {Bj, B2} of nonparallel loops interchanged

by the covering transformation τ . Map the vertices of Yg to the vertices

of the first barycentric subdivision of Y?s by sending ([A^) to ([A]])

and ([Bj]) to the barycenter of the 1-simplex ([Bj , B2]). This extends

to a simplicial imbedding of the first barycentric subdivision of Ys into

the first barycentric subdivision of 7? 5 . The image of this imbedding is

precisely the fixed-point set of the action of T on 7 / , and parametrizes

the τ-invariant degenerations of τ-invariant hyperbolic structures on N.
Thus Ys

g is homotopy equivalent to the boundary of the bonification
fε of the Teichmϋller space of N.
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Lemma 2.3.2. There is a homotopy equivalence of pairs Φ: (A^ , B^)

—> ((^f) ° ? (Yί)°) > whose restriction to A® is Y-equivariant and whose

restriction to B^ is Γτ-equivariant.

Proof. Follow the proof of Theorem 3.4 of [14]. The homotopy equiv-
alence Ψ: A° -> (Y*s)° defined there carries B° to (Ys)°. A cover

oo g oo g

of B^ is constructed as in the proof of Theorem 3.4. To see that the
sets in this cover are contractible requires the contractibility of the com-
plexes B(A) for nonorientable surfaces, which we have in Corollary 2.2.4.
The constructions in the remainder of the argument are equivariant, so
they show that the restriction of Ψ to B^ is a Γτ-equivariant homotopy
equivalence.

Lemma 2.3.3. Let χ be the Euler characteristic of a surface of (ori-
entable or nonorientable) genus g with s punctures.

(a) If g = 0, then Ys

g is homotopy equivalent to a wedge of spheres of
dimension -χ - 2.

(b) If the surface has genus at least 1, then Y® is homotopy equivalent
o

to a wedge of spheres of dimension —χ, while for s > 0, Yg is homotopy
equivalent to a wedge of spheres of dimension -χ - 1.

Proof When the surface is orientable, this is Theorem 3.5 of [14].
Suppose that it is a nonorientable surface N. We first show that Yg

is (g + s - 4)-connected. Construct a τ-invariant subdivision Af of A
by adding in the barycenter of each 1-simplex whose endpoints are a τ-
invariant (up to isotopy) pair of arcs, and extending this subdivision to
all of A in the obvious way. The fixed-point set of τ is a subcomplex
Tf of A'. Let T'^ = Tf ΠA^. By Corollary 2.2.4, Tf is contractible.
Assuming that s > 0, observe that fewer than g + s-I arcs cannot fill up
N, hence the (g + s - 3)-skeleton of T1 is contained in Γ^ . Since Tf is
contractible, it follows that Γ^ and hence Yg are (g + s- 4)-connected.

We are now in a position to adapt the proof of Theorem 3.5 of [14].
Assuming that s > 0 so that there are distinguished points p{, , ps,
define Ϋs to be the subcomplex of Ys

g consisting of those simplices
([Co, ••• , Ck]) for which no Ci bounds a disc which contains px and
one other pi, and no C7 bounds a Mόbius band which contains pχ and
no other pi. The proof of Lemma 3.6 of [14] goes through to show that
the map ί^ —• Yg~

{ defined by forgetting that pχ is distinguished is a
homotopy equivalence.

It remains to perform the inductive step. For g = 1, Yχ and Yχ are
empty, and for s > 1, Yχ is (s - 2)-dimensional and (s - 3)-connected,
yielding the values in Lemma 2.3.3(a) (using the convention that sets of
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negative dimension are empty). So we assume that g > 1. We first argue
for s = 0. For g = 2, Y® consists of three points so is homotopy equiv-
alent to a wedge of two O-dimensional spheres. So assume that g > 2.
We follow the argument on [14, p. 171], using its notation. For the in-
ductive step there, suppose that Xk+ι has been shown to be homotopy
equivalent to a complex of dimension no more than -χ . Consider a ver-
tex ([Co, , Ck]) of Xk - Xk+X. Let Nι, , N* be the components
of the surface obtained by splitting N along C , , Ck . Some of the
Nι may be orientable. If χt equals the Euler characteristic of Nι, then
/ = Σt

i=ιχi. By induction, each Y(Nι) is homotopy equivalent to a com-
plex of dimension at most —χ. - 1, therefore the dimension of the link
([Co, ••• , Ck]) is at most

The rest of the argument in [14] applies mutatis mutandis. This completes
the proof of Lemma 2.3.3.

To complete the proof of Theorem 2.1, it is only necessary to apply
Theorem 1.1 (b) to the manifold <^nWε, using the fact that 3r

τ^Wε is
(3g - 6 + 25)-dimensional together with the values given in Lemma 2.3.3.
This completes the proof of Theorem 2.1.

3. Mapping class groups of fibered 3-manifolds

Fibered 3-manifolds are I-bundles or Seifert fibered spaces. The two
main results of this section are the following.

Corollary 3.2.2. Let [M, ̂ ) be an irreducible I-bundle over (F, / ) .

Then J%*(M, m) is a finitely presented virtual duality group of type VFL.
Theorem 3.6.1. Let (M, m) be a compact orientable irreducible suf-

ficiently large 3-manifold that is a Seifert fiber space with complete and
useful boundary pattern. Let m{ c m. Then βf(M, m rel \mx\) is a

finitely presented virtual duality group of type VFL.
The double-underlined symbols indicate boundary patterns, a device in-

troduced by Johannson. We will discuss these in §3.1. In §3.2, Corollary
3.2.2. is proved by identifying £P+(Af, m) with a mapping class group
of F . For the Seifert fibered case, which occupies all remaining sections,
the Dehn twists about tori and annuli play a crucial role; these are intro-
duced in §3.3. §3.4 contains results which imply Theorem 3.6.1 for several
exceptional cases, such as the Seifert fibered manifolds which admit home-
omorphisms which are not isotopic to fiber-preserving homeomorphisms.
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In §3.5, we prepare for the general case by reviewing and extending work
of Johannson on mapping class groups of Seifert 3-manifolds. This sec-
tion also contains some technical results which will be needed in §4. The
last section contains the proof of Theorem 3.6.1 and a variant needed in
§4.

3.1. Boundary patterns. The following definitions are due to Johannson
[21]. A boundary pattern m. for a compact ^-manifold M is a finite set of
compact, connected (n - l)-manifolds in dM, such that the intersection
of any / of them is empty or consists of (n - /)-manifolds. The symbol
\ζjl\ will mean the set of points of dM that lie in some element of m. A
boundary pattern is said to be complete when | ^ | = dM. Any boundary
pattern ^ can be enlarged to a complete boundary pattern by adding in
the closures of the components of the complement of \m\.

The boundary pattern which consists of the components of the boundary
of M is denoted by dM.

If S is a codimension-zero submanifold of M, then a boundary pattern
m for M induces a boundary pattern | for S defined by

I = {components of Fr (S)} U [J {components of F Π S} ,
Fern

where Fr(S') denotes the frontier of S in M. If ^ is complete, then
so is g. The boundary pattern consisting of the components of Fr(-S) is
denoted by Fτ(S).

An admissible map f from (M, ^ ) to (N, φ is a map such that

^ = U { c o m P ° n e n t s of f~l (G)} -
G

The notation / : (M, ^ ) —• (TV, g) indicates that / is admissible.

For an I-bundle p: M —• F of manifolds with boundary pattern (M, ^ )

and (F, / ) , it is always assumed that the boundary pattern ^ con-

sists of {p~ι(B)\B e /} together with the components of the closure

of dM - p~\dF). (Thus p is not an admissible map; indeed, it does
not even carry boundary to boundary.) For a Seifert fibered 3-manifold
(Σ, σ_) with boundary pattern, it is always assumed that the elements of
σ_ are the preimages of the components of a boundary pattern of the or-
bit surface (so that the quotient map is admissible). Consequently the
elements of σ must be tori or saturated annuli.
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The mapping class group of a manifold with boundary pattern (M, m)
is the set of path components of the topological group

\ h\h is a homeomorphism of M and h(F) = F for every F E rn>.

We denote the mapping class group by ^{M, ^ ) .
Warning. Our definition is nonstandard in that we allow only home-

omorphisms that carry each component of the boundary pattern to itself.
Since we are concerned here only with virtual properties of the mapping
class group, this is a harmless technical convenience.

An i-faced 2-disc is a 2-disc whose boundary pattern is complete and
has i components. A boundary pattern for a 3-manifold is called useful
when the boundary of every admissibly imbedded /-faced disc in (M, ^ )
with / < 3 bounds a disc D in dM such that Dn(JFemdF is the cone on

3D Π \JFem ®F - When the boundary pattern is the set of boundary com-

ponents of M, this is equivalent to incompressibility of dM. In general,

it implies that each component of the boundary pattern is incompressible

in M, but says more. For example, the product of a 4-faced disc with Sι

yields a useful boundary pattern on the solid torus, but the product of a

3-faced disc with Sι does not.

We will now restate the theorems of §2 for 2-manifolds with boundary

pattern.

Lemma 3.1.1. Let F be a 2-manifold of finite type with compact bound-

ary and let £ be a boundary pattern for F. Let fχ be a {possibly empty)

subset of / . Then β^{F, / rel \f{ \) is a finitely presented virtual duality

group of type VFL. Let r be the number of components of OF that contain

either an element of / that is an arc, or an element of fv, and let s be

the sum of the number that do not and the number of punctures of F. If

F is orientable of genus g and 2g + r + s > 2, then the dimension of

Sr(F, / r e l |/j|) is d(g9r,s), where d(g, 0, 0) = 4g - 5, d(g,r9s) =

Ag + 2r + s ~4 if g > 0 and r + s>0, and d(0, r, s) = 2r + s - 3 .

If F is nonorientable of genus n and n + r + s > 2, then the dimen-

sion of J^(F, / rel \fχ|) is d(n9r,s), where d(n, 0, 0) = In - 5 and

d(n, r , s) = 2n + 2r + s - 4 if r + s > 0.

Proof Since β?+(F'9 f_τel \f{\) contains a subgroup of finite index

which is isomorphic to Γ^ r or Λ^ r, the lemma follows from the theo-
rems of §2.

3.2. Mapping class groups of I-bundles.

Proposition 3.2.1. Let (M, m) be an irreducible I-bundle over (F, / ) .

Suppose that mχ is a {possibly empty) subset of m such that each element
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of mχ is contained in the preimage of dF. Let fχ be the images of mχ

in Ψ. Then &+(M, m rel \m\) = &+(F, / rel \fj). =

Proo/ Assume for now that mχ is empty. Suppose first that M is

a product I-bundle. Define %^(F, /) -• ̂ .(Λf, ^ ) by sending (#) to

(g x 17). This is injective because restriction to F x {0} defines a left

inverse (the restriction is defined because in order to preserve the boundary

pattern, a homeomorphism must preserve Fx{0}). By [21, Corollary 5.9],

it is surjective.
Suppose that M is a twisted I-bundle over the nonorientable surface

F . For (g) G %?{F, /) there is a unique orientation-preserving lift g of

g to a homeomorphism of the orientable double cover F. Since M is the
mapping cylinder of the projection from F to F, and £ commutes with
the covering transformation, the homeomorphism gxlj of Fxl induces
an admissible homeomorphism of M. This defines a homeomorphism
^+(F, f)= ^{F, /) -+ ̂ +{M, ^ ) which is surjective by [21, Corollary
5.9]. For injectivity, suppose first that F is a Klein bottle, then <%*(F) =
Out(πj (F)) and it follows that the homomorphism is injective. In all other
cases, the lifting homomorphism %?{F, /) —• %?(F, /) is injective, so
the homomorphism to βf+(M, m) is injective. This completes the proof
when mχ is empty. If it is nonempty, let f2 be the boundary pattern

obtained from / by subdividing each element of fχ into three arcs. Let

m2 be the corresponding boundary pattern of M. It is easy to see that

;F(A/,/s rel \mx\) = ^ ( Λ f , m2) and jr{F, frέί |/J) = ^ ( F , / 2 ) , so

the result now follows from the case when mx is empty.

From Lemma 3.1.1 and Proposition 3.2.1, we have immediately

Corollary 3.2.2. Let (M, m) be an irreducible I-bundle over (F, / ) .

Then %"(M, m) is a finitely presented virtual duality group of type VFL.

3.3. Dehn twists. The mapping class groups of Seifert fibered 3-mani-
folds contain Dehn twists about tori, defined as follows. Regard Sι as the
unit circle in the complex plane. For (p, q) e Z x Z define a homeomor-
phism t on Sι x Sι x / by

' p , * ( e χ P ( 0 ) ' e χ P ( ^ ) >s) = (e*V{θ + 2πps) , exp(ψ + 2πqs) , s).

In general, if / is a homeomorphism of S x S x I that restricts to
the identity on Sι x Sι x dl, the trace of / is the element of
πAS1 x Sι, (1, 1)) represented by the path which sends s e I to the
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projection of / ( 1 , 1, s) to Sι x Sι . This agrees with the standard def-
inition of trace when / is regarded as a homotopy of Sι x Sι. Com-
bining Lemma 3.5 of [39] and the results of [12] shows that sending
(h) e β?{Sx x Sι x I rel Sι x Sι x dl) to the trace of h yields an iso-
m o r p h i s m f r o m βf(Sx x S x x l r e l Sι x Sι x d l ) t o π { { S ι x S ι , ( l , 1))
thus composition of these homeomorphisms corresponds to addition of
their traces. Moreover, this isomorphism shows that each isotopy class
contains exactly one of the t .

Now suppose M contains an imbedded 2-torus T = Sι x Sι either
disjoint from or contained in dM. One can construct a homeomorphism
of M using t on a product region Γ x [ 0 , l ] C M and the identity
homeomorphism on the rest of M this is called a Dehn twist about T. By
uniqueness of product regions, the isotopy class of the Dehn twist depends
only on the trace and not on the choice of product region.

If Sι x Sι x I is Seifert fibered by the circles Sι x {t} x {s} , then each
t takes fibers to fibers. When T is a fibered torus, we can choose the
coordinates on the product region so that the fibers are these circles, and
consequently the Dehn twists can and always will be chosen to be fiber-
preserving. Notice that the Dehn twist takes each fiber to itself precisely
when the trace is a multiple of the fiber. In this case the Dehn twist is said
to be vertical.

Dehn twists about properly imbedded annuli are defined similarly. In
the Seifert fibered case, Dehn twists about vertical annuli are always ver-
tical.

3.4. Exceptional cases. There are several cases for which the proof
of Theorem 3.6.1 requires special arguments. To avoid later distraction,
we will deal with these exceptional cases in the five propositions in this
subsection. In the process, we will determine the virtual cohomological
dimension of their mapping class groups; this will be used in §9.

Proposition 3.4.1. Let (M, m) be an orientable Seifert 3-manifold

which is an Sx-bundle over the annulus. Then %f(M, ^ ) is a finitely
presented virtual duality group of type VFL, of dimension 2 if both com-
ponents of dM contain an element of m. which is an annulus, and of
dimension 1 otherwise.

Proof Note that M is homeomorphic to Sι x Sι x I. If the boundary
pattern is empty or consists of some components of dM, then βf.(M, ^ )
contains

X xSl x / , 5 1 xSl x{0}) =β?(sX xSl x{0}) ^
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as a subgroup of index 2 or 1 (where the first isomorphism uses [39, Lemma
3.5]). The result follows in this case using Example 1.2(d).

Next, suppose that exactly one component of dM, say Sι x Sι x {0} ,
contains an annulus of ^ . The Dehn twists about vertical annuli running

from S1 x S 1 x {0} to S 1 x S 1 x {1} generate an infinite cyclic subgroup of
%?{M, m). Now Sι xSι x {0} is a union of annuli that are either elements
of m or the closures of complementary regions of \m\. An (isotopy class
of) orientation-preserving homeomorphism of Sι xSι x {0} that preserves
each of these annuli must be one of the following: (1) a Dehn twist about
the boundary of one of these annuli, and hence the restriction of a Dehn
twist about a vertical annulus, or (2) if m consists of exactly one annulus,
an involution which has two fixed points on the annulus, or (3) if m
consists of exactly two annuli, an involution which has exactly two fixed
points on each annulus. A homeomorphism of Sι x Sι x I which is the
identity on Sι xSι x {0} is isotopic to the identity relative to Sι xSι x {0}
(by Lemma 3.5 of [39]). Therefore the infinite cyclic subgroup generated
by a Dehn twist about a vertical annulus running from S x S x {0} to
Sι xSι x {1} has index at most 2 in ^+(M, m) , showing that %?{M, m)
has dimension 1 in this case.

Finally, suppose that both boundary components of M contain annuli
of /2£. Then, a Dehn twist about Sι x {̂ } is isotopic to the identity

if and only if it is vertical. Further investigation shows that + ^
contains Z x Z, generated by a Dehn twist about a vertical annulus and
any nonvertical Dehn twist about Sι x {j} , as a subgroup of index at most
2. This completes the proof of Proposition 3.4.1.

Proposition 3.4.2. Let (M, m) be an orientable Seifert l-manifold

which is an S -bundle over the Mόbius band. Then %f(M, m) is finite.
Proof. Observe that M is homeomorphic to the twisted I-bundle over

the Klein bottle K. If the boundary pattern is empty or is {dM} , then
from Proposition 3.2.1 we have J^+(M, jy) = JT+(K) = Z/2 x Z/2. Con-
sider any other boundary pattern, which must consist of saturated annuli.
A Dehn twist about dM whose trace is homotopic to a fiber is admissi-
bly isotopic to the identity, and one of the Dehn twists about dM whose
trace is a cross section to the fibering is isotopic to the identity (rel dM).
Hence for these boundary patterns, the mapping class group is still finite.
This completes the proof of Proposition 3.4.2.

Proposition 3.4.3. Let (M, ^ ) be an orientable 3-manifold which is

an Sι-bundle over the torus. Then ^(M) is a finitely presented virtual
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duality group of type VFL, of dimension 3 if the Euler class of M is zero,
and of dimension 1 if it is nonzero.

Proof Since M is closed, irreducible, and sufficiently large, it is known
from [39] that &(M) = Oui(π{{M)). If its Euler class is zero, then M
is the 3-torus so Out(πj(M)) = GL(3, Z) and the result follows from Ex-
ample 1.2(d). So suppose the Euler class n is nonzero. The fundamental
g r o u p o f M h a s p r e s e n t a t i o n (x9y9t\[x9t] = \y9t] = 1 , [x, y] = t n ) .
The center of πχ(M) is infinite cyclic, generated by t, and there is a
central extension

1 -+Z-*7Γ1(Af) - > Z x Z - > 1.

Since the center is characteristic, we have a homomorphism

α: O\xt(πχ(M)) -> Out(Z x Z) = GL(2, Z).

There are (nonvertical) Dehn twists about vertical tori in M which induce
the generators ({

0 J) and (} J) of SL(2, Z), and there is a homeomor-
phism inducing (°x

ι

0) (and reversing the orientation on the fiber). There-
fore a is surjective. The elements of ker(α) must induce the identity
on the center as well, since [x, y] = tn. Therefore an element of ker(α)
is determined by its effect on x and y, and must send x to some xtι

and y to some ytJ. Define commuting automorphisms βx and β2 by
βx(x) = xt, βx{y) = y, βx(t) = t, β2(x) = x9 β2(y) = yt, and β2(ή = t.
From the above, these generate ker(α). Since conjugation by x equals
β2 and conjugation by y equals β^n , it follows that ker(o ) = Z/nxZ/n .
It is well known that GL(2, Z) has a free subgroup of finite index (be-
cause SL(2, Z) = Z/4* z / 2Z/6 which is virtually free by [22 or 33, Lemma
7.4]). Therefore Out(πj(M)) contains a subgroup of finite index which
is isomorphic to a semidirect product (Z/« x ΊLjri) o F , where F is free,
so Out(πj(Af)) is virtually free. This completes the proof of Proposition
3.4.3.

Proposition 3.4.4. Let (M, ^ ) be an orientαble 3-manifold which is an

Sι -bundle over the Klein bottle. If the Euler class of M is zero, then &{M)
is a finitely presented virtual duality group of type VFL, of dimension 1. //
the Euler class is nonzero, then S^{M) is finite.

Proof Observe that πx(M) has presentation (a,b,t\btb~ι = t~ι ,

ata~ι = /, bab~ι = a~ιtn), where n is the Euler class. Suppose first that

n = 0. In this case we have an extension

1 -• Z x Z x Z -> π{ (M) -+ Z/2 -+ 1

in which the kernel is the subgroup generated by b2, α, and ί, and the
quotient is represented by b. The kernel is the unique maximal abelian
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subgroup of finite index, so is characteristic. The action of the quotient
Z/2 on Z x Z x Z is given by the matrix

Ί 0 0"
τ = 0 - 1 0

0 0 - 1 _

One checks easily that the normalizer of τ in GL(3, Z) is

± 1 0 0"
Norm (τ) = 0 P q

0 r s
ps-qr = ±\) = Z/2x GL(2,

and that restriction from Aut(π1(M)) to Aut(Z x Z x Z) = GL(3, Z) is
a homomorphism with image Norm(τ). The image of Inn(7Γ1(Λ/)) is the
subgroup generated by τ , so there is a surjective homomorphism from
Oxx\{πχ(M)) to the quotient of Norm(τ) by the subgroup generated by τ ,
which is isomorphic to Z/2 x PGL(2, Z). Similarly to Proposition 3.4.3,
the kernel of O\x\(πχ (Af)) -• Z/2 x PGL(2, Z) is isomoφhic to Z/2 x Z/2
generated by the outer automorphisms that send b to ba and b to bt.
Since PGL(2, Z) contains a free subgroup of finite index (PSL(2, Z) is
isomoφhic to Z/2*Z/3), an argument similar to that in Proposition 3.4.3
shows that Ou\(πx(M)) is virtually free.

Suppose that n φ 0. Examining the effect of conjugating an arbi-
trary element aιbjtk by a, b, and / shows that the subgroup generated
by t is the unique maximal infinite cyclic normal subgroup, and hence
is characteristic. (This also follows from standard results about Seifert
manifolds, such as [30, Theorem 8.7].) The kernel of Out(πχ(M)) —•
Out((α, b\bab~{ = a~1)) = Z/2 x Z/2 is generated by the commuting
outer automoφhisms represented by βχ and β2, where βx(a) = at,
βx(b) = b, βx(t) = t, β2(a) = a, β2(b) = bt, and β2(t) = /. But
β~2n is conjugation by b2 and β2

2 is conjugation by t, and it follows
that the kernel is isomoφhic to Z/2 x Z/2n . Therefore Out(πχ(M)) is
finite. This completes the proof of Proposition 3.4.4.

The remaining exceptional cases are the 3-manifolds that fiber over the
2-sphere with three exceptional orbits.

Lemma. Let M be a Seifert fibered 3-manifold that fibers over the 2-
sphere with three exceptional orbits. Then Out(πj(Λf)) is finite.

Proof. The fundamental group nχ(M) has presentation

~l = Qi' aϊ = hβi

where (αf , β() are the Seifert invariants, so 0 < βt < α z , but b can be
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zero. For integers aχ , a2 , α 3 > 2 , let β ( α t , α2 , α3) denote the quotient

πχ (M) I (qχ, tf2, q3\q°* = q? = q? = qχq2q3 = 1).

We claim that Ou\(Q{aχ, α 2 , α3)) is finite. We may assume that \/aχ +
l/α 2 + l/α 3 < 1 since otherwise Q(αj, α 2 , α3) is finite [41, Theorem
4.7.1]. Then Q(aι, α 2 , α3) is a planar discontinuous group, and using [41,
Theorem 5.8.3 and Corollary 5.16.6], Out(β(α 1, α 2 , α3)) can be identi-
fied with a subgroup of ^{S1, {xχ, x 2 , x3}), where xχ, x2, and x3 are

2three distinct points in S2 . This group is finite.
To prove the lemma, we may assume that πχ(M) is infinite, in which

case the center C is the infinite cyclic subgroup generated by h . Let Kχ

denote the kernel of the restriction Out(πχ(M)) —> Out(C). From above,
the kernel K of the homomorphism Kχ —> O\xt(πχ(M)/(h)) has finite
index in Kχ . We will show K is trivial.

Suppose {φ} G K. After changing 0 by an inner automorphism, we
may assume that it induces the identity automorphism on Q, as well as
on C, so that on the generators of πχ(M), φ has the effect φ(h) = h
and φ{qi) = q.h"' for some integers nr But hβi - φ(hβι) - φ{q^) =
qL

i

ihOLiYli = hβihairli, hence all ni = 0 and φ = \n ( Λ / ) . This completes the
proof.

As an immediate consequence, we have
Proposition 3.4.5. Let M be a Haken 3-manifold which is Seifert

fibered over the 2-sphere with three exceptional orbits. Then 3?(M) is
finite.

3.5. Extensions of Johannson's results. Let (M, m) be a Seifert fibered
3-manifold with boundary pattern, and with orbit surface (F, / ) . De-
note by ^ (M, m) the path components of the space of orientation-
preserving homeomorphisms that take fibers to fibers and take each el-
ement of m to itself. The next theorem refers to the Hantsche-Wendt
manifold, which is a closed flat 3-manifold given by the Seifert invariants
{-1; (n2, 1); (2, 1), (2, 1)} (see [30, pp. 133, 138; 6, pp. 478-481; 38,
13]).

Theorem 3.5.1. Let (M, m) be a Seifert 3-manifold with boundary
pattern. If (M, ^ ) contains an incompressible 2-manifold which is a union

of fibers, then the natural homomorphism £?f(M, m) —• <%^(M, m) is
injective. If either

(a) some element of m is an annulusf or
(b) M is not one of the exceptions 5.1.1 to 5.1.5 of[2\], M is not an

S -bundle over the annulus or Mόbius band, M is not an Sx -bundle over
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the torus or Klein bottle which admits a cross section, and M is not the
Hantsche-Wendt manifold,

then the natural homomorphism is surjective.
Theorem 3.5.1 is a compilation of known results. The proof of injec-

tivity is sketched in [39, p. 85]. Surjectivity in case (a) is proved by the
argument in [19, Lemma VI. 19], and in case (b) it is proved in [38] (see
also [30, Theorem 8.7]).

Let βfQ(M, 2|) denote the subgroup of β?f(M9 m) generated by home-
omorphisms that take each fiber to itself. These are called the vertical
mapping classes.

Notation. Let 3?*(F, / rel \f{\) denote the path components of the

space of homeomorphisms that take each exceptional point (image in F

of an exceptional fiber of M) of F to an exceptional point that has

the same Seifert invariants associated to it, take each element of / to

itself, and restrict to the identity on \fχ\. If I? is the set of exceptional

points, then β^*{F, / rel \fχ |) is isomorphic to a subgroup of finite index

There is a natural homomorphism from <%^(M, ζgTel \mχ\) to

J?*'(F, / rel l/jl). The argument given in Proposition 25.3 of [21] shows

that it is surjective (see also the discussion in Lemma 3.5.7 below). Thus
we have

Theorem 3.5.2. Let (M, m) be an orientable Seifert fiber space with

complete boundary pattern. Let mχCm and let f and fχ be the images

of m and mχ, respectively, in the orbit surface F. Then there is a short

exact sequence

° ( \^ ^ ( , z^ rel

It is necessary to discuss the subgroup %"°(M, ^ rel \mχ\) in detail.

Suppose first that the quotient surface F is orientable. The boundary

pattern m{ consists of some of the boundary tori, say T{,T2, -- ,Tk,

and sonκΓvertical annuli Aχ, A2, , Aι. Without loss of generality, we

may assume that the annuli At are disjoint (for if they intersect, they can

be combined into larger annuli or tori, forming a new boundary pattern

for which ^°(M, m rel \mχ|) is the same as before). Let m2= ^-mχ.

The Ti project to some ofthe boundary circles of F , and the Aj project
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to disjoint arcs in the boundary of F . The collection of these circles and
arcs is fχ let f2 = £ - fχ. Now choose a standard set of generators for

Hχ (F, |/2 |) consisting of properly imbedded arcs parallel to the images of

the Aj, together with the circles of fχ, together with a dual pair of simple

closed curves for each handle of F, and with a collection of d - 1 arcs

each running between two boundary components which are not entirely

contained in \fχ\ (where d is the total number of such boundary compo-

nents). The only homology relation among these chosen generators is that

the sum of the arcs and circles of fχ (with suitably chosen orientations)

is homologous into | / 2 | . The preimages in M of this set of generators

are a collection of vertical annuli and tori, and as is proven on pp. 191-
193 of [21], the Dehn twists about them generate J^°(M, yι rel \mχ\).
Moreover, Johannson shows that except in a few exceptional manifolds
(the S^bundles over the torus or Klein bottle with nonzero Euler class),
the isotopy relations among these vertical Dehn twists correspond to the
homological relations among the corresponding homology generators of
Hχ(F, | / 2 | ) . The exceptional fibers have no effect here; a vertical Dehn

twist about a torus bounding a neighborhood of an exceptional fiber is iso-
topic to the identity, taking each fiber to itself. So far we have explained the
case of F orientable for the following lemma, which relativizes Lemma
25.2 of [21].

Lemma 3.5.3. Let (M, m) be an orientable Seifert fiber space with
complete boundary pattern, but not one of the exceptions 5.1.1-5.1.5 of
[21]. Assume further that M is not an Sx-bundle over the torus or Klein
bottle. Let mχ c ^ , let m2 be the complement of mχ in j21, and let / ,

/ j , and f2 be the images of m, mχ, and m2, respectively, in the orbit

surface F. Then ^ ° ( M , ^ r e l \mλ\)**X[(F9 \f£).

We will now discuss Lemma 3.5.3 in the case when F is nonorientable.
Again, we choose a standard kind of basis for Hχ(F, | / 2 | ) , but instead of

a pair of dual curves in the handles of F, we regard F as having cross-
caps and choose the one-sided circles in these crosscaps as the homology
generators in place of the dual pairs of circles on the 1-handles that were
used in the orientable case. There is again a homological relation: the
sum of the arcs and boundary circles in fχ, and twice of all the chosen

one-sided circles, is homologous into f2. The preimage in M of each

one-sided circle is a one-sided Klein bottle K in M. Let JV(#) be a
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fibered neighborhood of K in M. In Lemma 25.1 of [21], Johannson
constructs a vertical homeomorphism supported in N(K) on K it is a
Dehn twist about the unique (up to isotopy) two-sided nonseparating sim-
ple closed curve in K (which is a fiber of the Seifert fibering), and since
the lift of this to the orientable double cover of K is isotopic to the iden-
tity, this Dehn twist extends to a vertical homeomorphism of N(K) which
is the identity on the boundary torus, so extends to M. Johannson's anal-
ysis of this homeomorphism shows that its square is isotopic to a vertical
Dehn twist about the torus dN(K), and thus the correspondence between
isotopy of vertical mapping classes and homological equivalence of the
elements of HX(F, |/2 |) extends to the case when F is nonorientable.

This completes our explanation of Lemma 3.5.3. A detailed proof can be
obtained by modifying pp. 188-195 of [21].

Definition. If F is orientable, define ^f(M, ^τcl\m{\) to be

βΓ°(M, m rel \mχ\). If F is nonorientable, define β^(M, m rel \mx\)

to be the subgroup of βΓ°(M, ^ rel \m{ |) generated by the squares of all

Dehn twists about vertical tori and annuli, together with all Dehn twists
about all vertical tori and annuli whose images in F have even (transverse)
intersection number with every one-sided circle in F.

The reason for introducing ^(M, ^ rel \mχ |) is the following. In §4,

we will need a free abelian subgroup of finite index in ^°(M, ^ rel \m{ |)

invariant under the action of %"*{F, / , rel \f{\) in the exact sequence

of Theorem 3.5.2, which contains the subgroup generated by the vertical
Dehn twists about the boundary circles and arcs in fχ as a direct sum-

mand.

We will now present several lemmas needed in the remainder of §3,

and in §4. Suppose that F is nonorientable with r crosscaps, and let

hi denote the vertical homeomorphism defined as above, supported in

a neighborhood of the preimage K{ of the one-sided circle in the / th

crosscap. Observe that on any vertical Klein bottle, each element of

J^°(M, m rel \m{\) restricts to a homeomorphism isotopic to the iden-

tity, hence none of the ht 's is in β^(M\ ^ rel \mχ\). Define a homo-

morphism φ from HX(F, |/2 |) to (Z/2)r x (Z/2)d whose /th coordinate

function, for / < r, is given by intersection number with the one-sided
circle in the / th crosscap, and whose (r+j) th coordinate function is given
by intersection number with the j th of the boundary circles which are not
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entirely contained in \fχ\. The kernel of φ is free abelian, generated by

the arcs and boundary circles in fχ, together with the boundary circles of

the crosscaps, together with two times each of the d - 1 arcs connecting
those boundary components, subject to the relation that the sum of the
arcs and boundary circles of fχ and the boundary circles of the crosscaps

is homologous into | / 2 | . We have

Lemma 3.5.4. Let F be nonorientable. Under the identification of

%*{M, m, rel \mx|) with Hχ(F, | / 2 | ) , Jtf(M, m rel \mχ\) corresponds to

the kernel of φ.
Proof Any element in the kernel of φ is (Z/2)-homologous to a

sum of arcs in dF and closed loops in the complement of the chosen
crosscaps, so has even intersection number with every one-sided circle
in F . It follows that each element of the kernel corresponds to an el-
ement of ^ ° ( M , ^ r e l \mχ\). On the other hand, the generators of

β?γ{M, ££ rel |/Wj I) are of two types: (1) a Dehn twist about the preimage

of a circle or arc representing an element of the kernel of φ (note that an
arc running between two different boundary components intersects some
one-sided circles in one point), or (2) the square of some vertical Dehn
twist, which corresponds to an element in homology which is divisible by
2, and therefore is in the kernel of φ. This completes the proof.

L e m m a 3 . 5 . 5 . %£(M, ^ r e l \mχ\) is normal in J%^(M, ^ r e l \ m { \ ) .

Proof Suppose v is a vertical Dehn twist about the preimage of a circle

or arc a in F. Suppose (g) e %?+(M, m rel \mχ\), and g induces ~g

on F . Then gvg~ι is a vertical Dehn twist about the preimage of ~g(a).
If a intersects each one-sided circle in F an even number of times, then
the same is true for ~g(a).

The next lemma, important in §4, follows from Lemmas 3.5.3 and 3.5.4.
Lemma 3.5.6. ^?(Af, m, rel \mλ\) is a free abelian group, and the

subgroup generated by the vertical Dehn twists about Tχ, T2, , Tk,
Aχ, , A[ is a direct summand. If F is orientable, then the sum of these
Dehn twists is trivial {assuming the traces have been chosen to be equal to
the same orientation of the fiber) and all relations among them are multi-
ples of this relation. If F is nonorientable, then they are free generators of
this summand.

We must also examine the homomorphism &f(M, m rel |Wj|) —•

T O F , / r e l ~ =
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Lemma 3.5.7. If either F has nonempty boundary, or the exceptional

set is nonempty, then the homomorphism %?£(M, m rel \mχ\) —•

&*(F,f rel |/j I) admits a splitting.

Proof. This is observed in [21], but we will construct it explicitly for
later reference. Let I? denote as usual the set of exceptional points of
F. By hypothesis, F - I? is not a closed surface, therefore the circle
bundle over F — & obtained by removing the exceptional fibers from
M admits a cross section s. Given a homeomorphism / representing
an element in J%**(F,f rel \f{\), consider the homeomorphism sfs~ι

defined on s{F-&). Since M is orientable, sfs~ι preserves the action of

elements of πχ{F -&) on the fibers, and since / represents an element of

%?*{F, / rel |/j | ) , sfs~x takes points near an exceptional fiber to points

near an exceptional fiber having the same Seifert invariants. Therefore

sfs~x extends to an orientation-preserving homeomorphism of M.

Summarizing, we have:

Proposition 3.5.8. Let (M, ^ ) be an orientable Seifert fiber space with
complete boundary pattern, but not one of the exceptions 5.1.1-5.1.5 of [21 ].
Assume further that M is not an Sx-bundle over the torus or Klein bottle.
Let mχ c £ | . If the quotient surface F either has nonempty boundary or

has nonempty exceptional set, then

(a) */(M, m rel |mj) = HX(F, \β)o^*(F,£ rel | £ | ) .

(b) &/(M, m rel \m{\) contains #f(M> £S rel \m{\)o^(F9 f rel |/J)

as a subgroup of finite index. The group %£(M, m. rel \mχ |) is free abelian

and the vertical Dehn twists about T{9 T2, •- , Tk , Λχ, , Aι generate

a direct summand of βtf(M, m. rel \mχ | ) .

(c) In both of these semidirect products, the action of %**(F, / rel \fx |)

on the normal subgroup agrees with the natural action of %** (F, / rel \fχ |)

Proof By Theorem 3.5.2 and Lemma 3.5.7, ^ ( A f ^ r e l \mχ\) =

H°(M, m, rel \mχ\) o^*(F9 f rel \fχ|), so part (a) follows from Lemma

3.5.3. Since ^ ° ( M , m, rel \mχ\) is normal, βtf(M9 tgrsλ \mJ\) o

β?*(F, f rel I/J) is a subgroup, and so (b) follows from Lemmas 3.5.4

and 3.5.6. I n l h e correspondence of Lemma 3.5.3, homology generators
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of H{(F, |/2 |) that are 2-sided circles or arcs correspond to the vertical

Dehn twists about their preimage tori or annuli, while the 1-sided circles
correspond to the vertical homeomorphisms supported near their preim-
age Klein bottles, as described after Lemma 3.5.3. Suppose T is a vertical
torus or annulus, and υ is a vertical Dehn twist about T. If h is a fiber-
preserving homeomorphism of M, then hvh~ is a vertical Dehn twist
about h(T). The vertical homeomorphisms near Klein bottles behave in
a similar manner. Thus the conjugation action of h corresponds to the
action of h on Hχ(F, | / 2 | ) , which is statement (c).

We end this section with one last lemma needed for Theorem 3.6.1.
Lemma 3.5.9. Let (M, ̂ ) be an orientable Seifert fiber space with

complete boundary pattern, but not one of the exceptions 5.1.1-5.1.5 of[2\].
Assume further that M is not an Sι-bundle over the torus or Klein bottle.
Let m j C ^ . Then there is a subgroup of finite index in %*{M, 221 rel \mx \)

that intersects <%*°(M, ^ rel |ΛWJ|) in a torsion-free subgroup.

Proof We will assume that M is closed and has no exceptional fibers,
since otherwise the lemma follows directly from Proposition 3.5.8(b). If F
is orientable, then β?°(M) = HAF) is already torsion-free, so assume that

F is nonorientable. Choose a standard generating set {x{, x2, , xg}

for nχ(F), where each xέ is the center circle of a crosscap. The x. satisfy

the relation x\x\ x2.= 1. There is a presentation for πx{M) (see for
example [19, p. 91])

(*!,••• ,xg, h\xthx~X =h~l for 1 < / < g, x]χ2

2"'X2

g

where b is the Euler class. Define G to be the finite abelian group

ϊ 9 ' - ,Xg9H\2H = 0, 2Xk=0foτk>2, IX

Obviously H is nonzero in G. Write π for π{(M). Now Aut(π) acts
on the right on Hom(π, G) since G is abelian, the inner automorphisms
act trivially and there is an induced action of Out(π).

We have seen in the discussion of Lemma 3.5.3 that βf°(M) is gener-

ated by vertical Dehn twists about vertical annuli and tori, together with

the homeomorphisms hn 1 < / < g, such that the unique torsion element

of &°(M) = H{ {F) is represented by flf=i hι
Let a be the element of Hom(π, G) which sends the generators to

their capitalizations. Now the induced automorphism (A/)# sends xt to
x{h while fixing all other generators, so the result of acting on a by the
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outer automorphism induced by Πf=i Λf is a homomorphism that sends
each x. to Xt + H. Let Out°(π) denote the outer automorphisms that act
trivially on Hom(π, G). Since Hom(π, G) is finite, this is a subgroup of
finite index in Out(π), and therefore the subgroup of W(M) consisting of
the mapping classes that induce automorphisms in Out°(π) is a subgroup
of finite index that does not contain the torsion element of β?°(M). This
completes the proof of Lemma 3.5.9.

3.6. Statement and proof of Theorem 3.6.1. We are finally set up to
prove the main result of §3.

Theorem 3.6.1. Let (M, j2l) be a compact irreducible sufficiently large
3-manifold that is a Seifert fiber space with complete and useful boundary
pattern. Let m{ c ^ . Then βf(M, m, rel \mx\) is a finitely presented

virtual duality group of type VFL.
Proof Since M is assumed to be sufficiently large, and its boundary

pattern is useful, (M, jzfi can only be among the exceptions 5.1.1-5.1.5 of
[21] if it is Seifert fibered over the 2-sphere with three exceptional orbits.
By Proposition 3.4.5, the mapping class group is finite for this case. For
the S -bundles over the annulus, Mόbius band, torus, or Klein bottle,
Propositions 3.4.1-3.4.4 show that the mapping class groups are finitely
presented virtual duality groups of type VFL. If M is the Hantsche-Wendt
manifold, then %*(M) is finite [6]. For the remainder of the proof, we
will assume that M is not one of these cases, and hence by Theorem 3.5.1
t h a t ^ ( Λ / , ^ r e l \m{\) = J^/(M, m, rel \mγ\).

According to Theorem 3.5.2, there is an exact sequence

Recall that J%**(F, / rel |/j|) is isomorphic to a subgroup of finite index

in %?{¥-%, f_ rel |/| | ) , where % denotes the set of exceptional points in

F. By Lemma 3.1. C~%*{F - %, / rel |/j |) is a finitely presented virtual

duality group of type VFL, hence so is %f*(F, / rel |/j |). Theorem 3.6.1

now follows using Lemma 3.5.9.

For use in §4 we need a variant of Theorem 3.6.1. Let (Σ, g) be a
fibered 3-manifold and σ{ c σ_. Define <^(Σ, q_\ σ{) to be the normal

subgroup of J%*\Σ , σ) consisting of the mapping classes (/) such that
the restriction of / to each element of σ{ is isotopic to the identity.
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Lemma 3.6.2. Let (Σ, σ) beafibered 3-manifold and σχ a nonempty

subset of σ_. If (Σ, σ) is an I-bundle, assume that the elements of σχ lie

in the preimage of dF. Then &{Σ, g\ σx) is a finitely presented virtual

duality group of type VFL.

Proof If dΣ is empty, then this is a case of Theorem 3.6.1, so we
assume that <9Σ is nonempty. Suppose first that (Σ, g) is an I-bundle.
Since the elements of σχ are annuli or squares, tJ~eir mapping class groups

are finite, so &(Σ,g\ σx) has finite index in ^(Σ,g) and the result

follows from Corollary 3.2.2.

Assume now that Σ is Seifert fibered. According to Lemma 3.5.7, there

is a splitting a: %**{¥, /) -> βT/(Σ9 g) so that &/{Σ, g) = #°(Σ, g) o

a(^*{F, £)). The splitting has the property that for G e g, a{g)\G

is isotopic to the identity if and only if the restriction of g to the im-

age of G in d F is orientation-preserving. Therefore the intersection of

&(Σ9 g\σx) with a(^\F, /)) has finite index in a(JT*(F, / ) ) . It fol-

lows that ^ ( Σ , g\ σχ) is an extension of ^ ( Σ , σ; σχ) Π ^ ° ( Σ , g) by a

subgroup of finite index in %?*{F, / ) . Lemma 3.5.9 shows that there

is a subgroup of finite index in ^ ( Σ , g) that intersects ^ ( Σ , g\ σx) Π

^ ° ( Σ , σ) in a torsion-free subgroup, and the result follows.

4. Mapping class groups of Haken manifolds

In this section we will prove one of our main results:
Theorem 4.3.1. Let (M, m) be a compact orientable sufficiently large

3-manifold with complete and useful boundary pattern. Then β^{M, m)
is a finitely presented virtual duality group of type VFL.

In particular, since the boundary pattern dM is useful when the bound-
ary of M is incompressible (see §3.1), this includes as a special case

Corollary 4.3.5. Let M be a Haken 3-manifold. Then %*(M) is a
finitely presented virtual duality group of type VFL.

The proof is long, and rather delicate in places. The first step is to
determine that, apart from one exceptional case, the group β^(M, Σ, ^ )
of mapping classes which preserve Johannson's characteristic submanifold
Σ is isomorphic to %f(M, ^ ) . This is carried out, using a major result of
Laudenbach, in §4.1. Also in that section, we handle the exceptional case
of 3-manifolds admitting a Sol structure, by proving that their mapping
class groups are finite.
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The second part of the proof, detailed in §4.2, involves a sub-
group 3£{M, Σ j , , Σn , £|) of %?(M, Σ, ^ ) . This is the subgroup
consisting of all mapping classes which preserve each component Σ. of Σ,
and whose restriction to the closure of the complement of Σ in M is
admissibly isotopic to the identity. Results of Johannson show that
JΓ(M9 Σ j , , Σn , w|) has finite index in β?(M9 Σ, ^ ) , so to prove
Theorem 4.3.1 it suffices to prove that 3£{M, Σ j , , Σn , w|) is a finitely
presented virtual duality group of type VFL.

Restriction to the components of Σ produces an exact sequence

where Fr(Σz) denotes the frontier of Σz in M, and the groups
^(Σi, σt:; Fr(Σz)) were defined just before Lemma 3.6.2. The kernel K

consists of the mapping classes whose restriction to each Σi is isotopic to
the identity. Suppose / is a homeomorphism representing an element of
K. The restriction of / to the complement of Σ is isotopic to the iden-
tity, and its restriction to each Σz is isotopic to the identity. Therefore, /
is isotopic preserving Σ to a homeomorphism which is the identity outside
a product neighborhood of the frontier of Σ. That is, / is isotopic to a
product of Dehn twists about the tori and annuli which make up the fron-
tier of Σ. On the other hand, any such product is obviously an element of
K, since after restriction to Σz , the components of the frontier are free
to move so the Dehn twists about them are isotopic to the identity. These
Dehn twists commute (see §3.3). Summarizing, we have the following:

Lemma 4.2.2. There is a surjective homomorphism

p: JT (λί, Σ{, Σ2, •• , Σn , m) - f[& (Σ^OJ FΓ(Σ,.))

whose kernel is the finitely generated abelian subgroup K generated by
Dehn twists about the components of the frontier of Σ.

The surjectivity of p is clear: any element of Yl1=ι^{Σn cr; Fr(Σz))

can be represented by a tuple (g{, g2, , gn) of homeomorphisms of
Σi for which each g. is the identity on the frontier of Σz (by definition of

σi Fr(Σ/))), and taking each g{ on Σz and the identity on M-Σ

defines an element of 3£{M, Σ j , Σ 2 , , Σn, ^ ) which restricts to the

element we started with in γ[n.=ι &(Σ., σz Fr(Σ.)).

By Lemma 3.6.2, Π"=i ̂ ( Σ , , tf, Fr(Σf.)) is a finitely presented virtual

duality group of type VFL. If K were free abelian, then it would fol-

low that 3t{M, Σ j , Σ 2 , , Σn , m) is a finitely presented virtual duality
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group of type VFL. Surprisingly, K can contain torsion. A rather simple
example is given at the end of §4.2. So to prove Theorem 4.3.1, it is nec-
essary to find a subgroup of finite index in «̂ Γ(Af, Σ{, Σ 2 , , Σn , J2|)
which intersects K in a torsion-free subgroup. This is the content of §4.3
and is the most delicate part of the argument. A homomorphism is con-
structed from a subgroup of finite index in Jf(M, Σ{, Σ 2 , , Σn , m)
to a finite group, which is injective on the torsion of K. Its kernel is the
required subgroup.

4.1. The Sol exception. Recall that if M is a torus bundle over the
circle such that the matrix of the attaching homeomorphism has trace of
absolute value < 2, then M is Seifert fibered, while if the trace has
absolute value greater than 2, then M is not Seifert fibered but instead
admits a geometric structure modeled on the geometry Sol (see for example
[32, Theorem 5.5]).

Proposition 4.1.1. Let ( M , ^ ) be a Haken 3-manifold with complete
and useful boundary pattern, and let Σ be its characteristic submanifold.
Assume that M is not a torus bundle over the circle which admits a Sol
structure. Then the natural homomorphism ^{M, Σ, m) —> %*(M, m)
is an isomorphism.

Proof. Since the characteristic submanifold is unique up to admissible
isotopy, the homomorphism is surjective. In the proof of injectivity, we
will eventually apply the following result of Laudenbach [24, pp. 50-62].

Theorem. Let G be a compact connected incompressible surface in a
P2-irreducible 3-manifold M and let m0 be a basepoint in the interior of
G. If f: M —• M and g: M —> M are homeomorphisms which preserve
G, such that g is isotopic to f through homeomorphisms fixing m0, and
preserving dG, then the isotopy is deformable relative to M xdludM xl
to an isotopy through homeomorphisms that preserve G.

Let (/) e %?{M\ Σ, m) and suppose that H: M xl -> M is an ad-
missible isotopy from / t o \M. To prove injectivity, we must find an
isotopy that preserves Fr(Σ).

Let F be a component of Fr(Σ). It is easy to see that f(F) = F . We
may assume that / fixes a basepoint m0 in F . Recall that the trace of
H at m0 is the homotopy class in π{(M, m0) of the restriction of H to
m0 x I.

Claim. The trace of H at mQ is in the subgroup π{(F, m0).
Proof of Claim. When dM is nonempty, [21, Corollary 18.2] applies

to prove the claim. When dM is empty, the argument in [21, Lemma 18.1]
shows that if the claim is false then the components of V and M - V
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adjacent to F are each homeomorphic to the product of the torus and an
interval. By maximality of V, this is only possible when M is a torus
bundle over the circle which admits a Sol structure, which is excluded by
hypothesis. This completes the proof of the claim.

Since F is a square, annulus, or torus, there is an isotopy on F from
the identity to the identity whose trace is equal to the trace of H. So
it is possible to change / by an admissible isotopy with support in a
neighborhood of F, so that the trace of the isotopy from / to the identity
of M is trivial. Also, / induces the identity automorphism on π{(F, m0)
and preserves each element of the boundary pattern of F (either the two
boundary circles, if F is an annulus, or the four sides, if F is a square),
so we may assume / is the identity map on F. At each element of the
boundary pattern of F the trace must also be trivial. Using the analogue
of Laudenbach's Theorem for simple closed curves and proper arcs in 2-
manifolds, we may deform the isotopy admissibly so that each component
of the boundary of F is preserved at each level of the isotopy. The trace at
m0 is still trivial, so using [26], we may assume that m0 is actually fixed
during the isotopy. Now Laudenbach's Theorem applies. This completes
the proof of Proposition 4.1.1.

To avoid later distraction, we will deal now with the exceptional case
described in Proposition 4.1.1.

Proposition 4.1.2. Let M be a torus bundle over Sι which admits a
Sol structure. Then β?{M) is finite.

Proof. The characteristic submanifold Σ of M is a regular neighbor-
hood of a fiber F. By [21, Corollary 27.6] the subgroup generated by
Dehn twists about essential tori has finite index in %?(M). Since every
essential torus is isotopic into Σ, this subgroup is abelian and generated
by Dehn twists about the fiber. But if φ is the attaching homeomorphism
of the bundle, and x is an element in πχ(F), then the Dehn twist about
the fiber with trace x is isotopic to the Dehn twist with trace φ(x), hence
the Dehn twist with trace x~ιφ(x) is nullisotopic. Since the matrix of
0 # : πχ(F) -* πχ{F) has trace of absolute value at least three, the elements
of the form x~ιφ(x) constitute a subgroup of finite index in π{(F). It

follows that W{M) is finite.
4.2. The subgroup K of the subgroup 3?(M, Σ{, , Σπ , # l ) , and a

surprising example. Let (Σj, σx), (Σ2, σ2), , (Σπ , σn) be the compo-

nents of (Σ, σ). Recall from §3.1 that the boundary pattern σi consists

of the components of the frontier of Σi in M, together with the com-
ponents of the intersections of dΣi with the elements of ^ . Clearly
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j Σ 2 , , Σn , m) has finite index in ^(M, Σ, ̂ ) . Although
it will not matter for us, the possibilities that can arise as the components
of the closure M - Σ are described in [21, p. 159].

Lemma 4.2.1. Assume that M is not a torus bundle over Sι which ad-
mits a Sol structure. Then the image of the homomorphism β^{M, Σ{, Σ 2 ,

π - Σ, Fr(Σ)) induced by restriction is finite.

Proof. By the argument in [21, Corollary 27.6], there is a subgroup of
finite index in %f(M, Σ, ̂ ) generated by Dehn twists about admissible
essential tori and annuli in Σ. Thus, there is a subgroup of finite index in

, Σ, m) which can be represented by homeomorphisms which are

the identity on M — Σ. The lemma follows.
Notice in particular that when Σ is empty, the restriction in Lemma

4.2.1 is the identity, so Theorem 4.3.1 is proved for this case. When M
is fibered (i.e., when M = Σ), Theorem 4.3.1 has been proved in §3. So
for the remainder of §4, we will assume that the characteristic submanifold
Σ is not empty and is not equal to M. In particular, the frontier of each
component Σt of Σ is nonempty.

Define 3f(M, Σ{, Σ 2 , , Σn , m) to be the kernel of the homomor-
phism in Lemma 4.2.1. Recall the groups 3f(Σi9 σt\ F r ^ ) ) defined just

before Lemma 3.6.2.
Lemma 4.2.2. There is a surjective homomorphism

whose kernel is the finitely generated abelian subgroup K generated by
Dehn twists about the components of the frontier of Σ.

Proof. Since the frontier of each Σf. is nonempty, the argument of [19,
Lemma VI. 19] shows that each element of 3t{M, Σ j , Σ 2 , , Σn , ̂ ) is
representable by a homeomorphism whose restriction to each (Σi, σ ) is

fiber-preserving. According to Theorem 3.5.1, this fiber-preserving home-
omorphism is unique up to admissible fiber-preserving isotopy. Therefore
the restriction homomorphism p is well defined. Since the elements of

σi FriZj.)) have representatives which are the identity on the fron-

tier of Σ , p is surjective. Any element of the kernel of p is isotopic
to a homeomorphism which is the identity outside a neighborhood of the
components of the frontier of Σ, giving the description of K.

Lemma 4.2.2 gives us the following reduction of Theorem 4.3.1.
Proposition 4.2.3. If 3£{M, Σ{, Σ 2 , , Σn , ̂ ) contains a subgroup

of finite index, which intersects K in a torsion-free subgroup, then %?{M, ^ )
is a finitely presented virtual duality group of type VFL.
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Proof. If M has a Sol structure, then β?(M) is finite, and has the
desired properties. So assume that Proposition 4.1.1 applies to M . By
Lemma 3.6.2, ]\S/{Σr σz; Fr(Zf.)) is a finitely presented virtual duality

group of type VFL. Hence 3£{M, Σχ, Σ 2 , , Σn , jg) contains a sub-
group of finite index, whose image under p is a finitely presented virtual
duality group of type FL. The intersection of this subgroup with a sub-
group of finite index which intersects K in a torsion-free subgroup is an
extension of a finitely generated free abelian group by a finitely presented
duality group of type FL, hence is the desired subgroup of %?{M, ly).

Example 4.2.4. It may seem surprising that K can contain torsion.
To construct an example, let Σ{ and Σ2 be Seifert fibered, each with one
boundary component and an orientable orbit space having negative Euler
characteristic. Let ή'° and ή'1 be the isotopy classes of Dehn twists
about <9Σz with traces respectively the fiber zi and a cross section wi to
the fibering on <9Σ.. Form M(a, b, c, d) from Σj UΣ 2 by identifying
dΣ{ to <9Σ2 using a homeomorphism that sends zχ to az2 + bw2 and wχ

to cz2 + dw2, where ad - be = 1 and b φθ. Since the orbit spaces are
orientable, Lemma 3.5.3 shows that the ή'° are isotopic to the identity
(reldΣ;). Since the trace zχ of t°χ'

1 is identified to az2 + bw2, it follows
that t\'° is isotopic as a homeomorphism of M to -atι

2'° -bt\Λ , and
a similar relation occurs for t\'1 . By Laudenbach's Theorem in §4.1, if
a homeomorphism of M preserving dΣχ is isotopic to the identity, then
it is isotopic to the identity preserving dΣχ . Putting these observations
together, we have the following abelian presentation for K:

/«;•»,,:•', 4 ° , 1 ; Ί , ; o = o , ί ; - o = o , 1 ; ° + ί , 4 » + ί«; i = o ,

+«;••+*•••-<>)

from which one finds that K = Z/b generated by ί2'
ι .

Remark 4.2.5. I am fairly certain that in general, by carefully analyz-
ing a presentation matrix for K, it can be shown that K is torsion-free
unless M is a graph manifold [38] in which the fundamental group of
each component of Σ has infinite cyclic center. The simplification of the
remainder of our proof of Theorem 4.3.1 that would result from the use
of this information is minor and would not justify the work entailed in
the analysis of K.

Remark 4.2.6. In Lemma 9.5 we will compute the rank of K, as a step
in the calculation of the virtual cohomological dimension of the mapping
class group.
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4.3. The proof of the main theorem. By Proposition 4.2.3, Theorem
4.3.1, stated at the beginning of §4, is immediate from the following the-
orem.

Theorem 4.3.2. 3£{M, Σχ, Σ 2 , , Σn, m) contains a subgroup of fi-
nite index, which intersects K in a torsion-free subgroup.

To prove Theorem 4.3.2, we will construct a homomorphism from a
subgroup of finite index in 3P(M 9 Σχ, Σ 2 , ,Σn,m) to a finite group,
which injects on the torsion of K. The kernel of this homomorphism is
the subgroup sought in Theorem 4.3.2.

The construction of the homomorphism will use the following property
of surfaces.

Lemma 4.3.3. Let (F, /) be a connected surface of finite type with

χ(F) < 0, and let fx be a nonempty subset of / . Let Wχ, W2, • , Wn

be the elements of fχ that are boundary components of F, and let tw

denote the isotopy class of a Dehn twist about W(. Let b be an integer
with b > 3. Then for some m, there are a subgroup SC(F, / rel \fχ |) of

finite index in ^ ( F , / rel |/J) and a homomorphism

with the following properties'.

(1) 5?{F,f rel |/jj) contains the tw .

(2) The elements 7f &(F, / rel |/jj)' act trivially on H{ (F, \£\ Z/b).

(3) The elements {φ{tw)} form a basis for a subgroup which is isomor-

phic to Zn.
(4) Upon passage to GL(ra, Z/b), the elements {φ(tw)} form a basis

for a subgroup which is isomorphic to (Z/b)n .
Proof Let f2 - f-fx. We first consider the case when F is orientable.

Suppose that fΓ> 3 . Suppose first that U Wιr = dF . Let F{ be a homeo-
moφhic copy of F and let D(F) = FudfFχ be the double of F . Extend-
ing by the identity defines a homomorphism ^{F rel dF) —• β?(D(F)).
Let N = Hχ(D(F) Z). Choose for N a basis of the form

[ A 1 9 A 2 , . . . , A n _ χ , W χ , W 2 9 . . . , W n _ { 9 X l 9 X 2 , ••• , X r } ,

where each Ai intersects Wi and Wn each in one point and is disjoint
from all other W , and where each X{ can be represented by a cycle
disjoint from dF . Let E/ denote the (n - 1) x (n - 1) matrix with 1 in



MAPPING CLASS GROUPS OF 3-MANIFOLDS 37

t h e (/, /)-entry a n d zeros in all t h e o t h e r entr ies . Let 1^ d e n o t e t h e kxk
i d e n t i t y m a t r i x , a n d 0^ 7 t h e k x / zero m a t r i x . F o r 1 < / < n - 1, we
have o n N t h a t

( '•>).-

oM
0.

while

A
0.

Jn-\,n-l
ln-l

0,,.-,

0
Jn-\,r

\-\,r

I
where A is the (« - 1) x (n - 1) matrix with every entry equal to - 1 . In
this case, define 2?(F, f rel |/jj) to be the kernel of JT+(F, £ rel \j[\) -

Aut(//,(F, |/ 2 | ; Z/Z>)). Putting m = ά\m{N), Lemma 4.3.3 follows for

the case \JWί — dF when φ is taken to be the composite

(F, £ rel Aut {Hχ (D (F))) s GL(m, Z).

Now suppose that U ̂  7̂  ̂ ^ ( a n d still n > 3). This time form the
double along (J Ŵ  . Extending by the identity yields a homomorphism

This time, choosing for H{(D(F)) a basis of the form

!„_,, Wχ,W2, Wn r,, x,, ,xr

the lemma follows in a manner similar to the previous case.
If n = 2 and χ(F) = - 1 (so F is a disc-with-two-holes) then the

argument just given still works.
Suppose n < 2 and, if n = 2, then F is not a disc-with-two-holes. Let

(Z/3)* be the quotient of HX(F\ Z/3) by the subgroup generated by the
homology classes of the Ŵ  . Since χ(F) < 0 and i 7 is not a disc-with-
two-holes, it follow that q > 1. Let F be the covering of F corresponding
to the kernel of the composite πχ(F) -+ HX{F\ Z/3) -• (Z/3)^ . Observe
that

1. The kernel is preserved by the induced automorphism of any element
of %f{F, / rel \f{ | ) , so each such element has lifts to F.

2. Each component of the preimage of any element of / projects

homeomorphically to Wt in particular, the preimage of |J W{ consists

of Zqn > 3 circles.
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3. The preimages of the elements of the boundary patterns on F de-
termine boundary patterns / , / j , and f2 on F .

Define &{F, / rel \f\\) To be"the setof elements (A) in the kernel of

&(F, / rel \J\\) ̂  AutjH^F, |/2 | Z/b)) for which some (hence exactly

one) lift h of h preserves each element of / . Observe that

4. Lifting (h) to (A) defines a homomorphism from SC{F, / rel |/J)

to <T(F, / rel |£ | ) .
5. Each tw lifts to a product of Dehn twists about the preimages of

Composing the lifting homomorphism with the homomorphism

obtained for the case n > 3 yields the homomorphism needed.
In case F is nonorientable, let F be the orientable double cover of F .

Choosing the orientation-preserving lift defines a homomorphism from
&(F, / rel l/jl) to β?(F, / r e l \f{\). Passing to appropriate subgroups

and using the homomorphism to GL(ra, Z) already constructed for the
orientable case completes the proof of Lemma 4.3.3.

The next task is to produce a 3-dimensional version of φ. To simplify

notation during the next lemma, write Σ for a single component of the

characteristic submanifold of M. Let σχ be the boundary pattern con-

sisting of the components of Fr(Σ), and let σ2 = g - σχ . Since M is not

fibered, σ{ is nonempty. Denote by F the orbit surface of Σ, and by / ,

/ j , and f2 the images of ^ , σ{, and σ2 in F .

~~ Suppose first that Σ is Seifeft fibere~cf. Write Tχ,T2, , Tk for the
elements of σ{ that are tori, and A{, A2, , Aι for the elements that

are annuli. Let ή'0 denote the isotopy classes in ^ . ( Σ , g_ rel \σχ\) of

Dehn twists about T. with traces the fiber of the Seifert fibering. If F is

orientable, choose the ή' ° to have equal traces with respect to a global

orientation of the fiber. If F is nonorientable, choose the t\'° to have
equal traces with respect to a global orientation of the fiber of the Seifert
manifold obtained by removing from M the preimage of the center circles
of the crosscaps of F . Let ή'ι denote the isotopy classes of Dehn twists
about T whose traces are the intersection with T. of a cross section to
the fibering defined over the complement of the exceptional points in F .
If F is an annulus with no exceptional points and σ{ consists of two tori,
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choose t\*ι equal to the inverse of tQ

2'
ι. Let at denote the isotopy classes

of Dehn twists about the Ai, again with compatible traces.

If Σ is an I-bundle, let ή'ι, 1 < j < k, denote the isotopy classes of
Dehn twists about the annuli in σχ . If F is an annulus with no exceptional

points, and σχ consists of two annuli, choose t\*ι equal to the inverse of

<S '
We are now prepared for the main technical lemma to be used in the

proof of Theorem 4.3.2.
Lemma 4.3.4. (a) The elements {t\'°, , 4'°, ' ? ' ' , , ί ' *, ax,

• , at} generate a free abelian subgroup A of β?+(Σ, g rel \σχ\). If F is

orientable, then these elements satisfy the relation Σ*= 1f? ' 0 -\-Σι

j=χaj = 0.

If F is a Mόbius band with no exceptional points and fχ = {dF}, or if

F is an annulus with no exceptional points and either fχ consists of both

boundary components of F, or fχ consists of one boundary component of

F and no element of / is an arc, then the relation Σk

i=χt^
x is satisfied.

All other relations among these generators are consequences of these.

(b) Let b be an integer with b > 3 . Then for some r and m, there

is a subgroup J ? ( Σ , σ_ rel \σχ\) of finite index in £?+(Σ, σ_ rel \σχ\) which

contains A and admits a homomorphism

> (Z/b)r x G L ( m , Z/b)

whose kernel intersects A in the subgroup bA .
Proof. Suppose first that Σ is an I-bundle, so that

, /rel(Σ, g rel

by Proposition 3.2.1. The elements {t°{'
ι, , t°k'

ι} correspond to Dehn
twists about the boundary components of F that are elements of fχ .

When F is a disc, no element of g is an annulus (because the boundary
pattern of Σ is useful, there must be at least four arcs in / if F is a
disc), so there is nothing to prove. If F is a Mόbius band with no excep-
tional points, then <^(Σ, σ rel |<7j|) is trivial and the lemma is obvious.

Suppose F is an annulus with no exceptional points. If one of the bound-
ary components of F contains no element of fχ, and no element of /

that is an arc, then ^ ( Σ , g rel \σχ\) is trivial and the lemma is obvious.

Otherwise ^ ( Σ , σ rel \σχ\) = Z and projection to Z/b will satisfy the

conclusion of Lemma 4.3.4.
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In the remaining cases, the elements {t0^1, •• , t°k'
{} form a basis

for a free abelian subgroup of β?+(F, / rel |/j |), so (a) is proved for I-

bundles. Let i ? (Σ, q_ rel \σ{\) be the subgroup of ^ ( Σ , £ rel IσJ) that

corresponds to the subgroup 2C[F, / rel |/J) in Lemma 4.3.3 (under the

isomorphism of Proposition 3.2.1). Using Lemma 4.3.3 produces a com-
posite

& ( Σ , g rel |σj) -> ̂  ( F , / rel |yjj) - GL(m, Z/6)

satisfying the conclusion of Lemma 4.3.4(b).

From now on, we assume that Σ is Seifert fibered. As for I-bundles,

the cases when F is a Mόbius band or annulus with no exceptional points

can be handled by inspection, so we assume that χ(F - %?) < 0. Write B

for the free abelian group ^ ° ( Σ , g rel \σχ |) studied in §3.5. From Propo-

sition 3.5.8(b) we have Boβ?*(F, / rel |/J) as a subgroup of finite index

in <^(Σ, £ rel \σ{\), such that the elements {t\'°,-- , tι

k'° , ax,-- 9 a^

generate a summand B1 ofB, subject to the relation specified in Lemma
3.5.6. The Dehn twists {t°x

y ι , , t°k'
ι} generate a free abelian subgroup

C of %**(F, / rel \f{\) that commutes with all vertical Dehn twists, so

Lemma 4.3.4(a) is proved for the Seifert fibered case.

Apply Lemma 4.3.3 to (F - &, / rel | / J ) , obtaining for some m a

homomorphism φ: <2f*(F - <T, / rel |./j|Γ-> GL(m, Z/b) carrying C

to C/bC. Regarding %f*{F, / rel |/J) as a subgroup of finite index in

βT(F - f, / rel \fx I), define ^ * ( F 7 / rel /jj) to be the intersection of

X"(F,£ reTl^D^ith ^ ( F - g\ / rel I/JJ)". Let ^ ( Σ , £ rel 1̂ 1) de-

note BoS?*(F\l rel | / J ) . Note that C is~contained in ^ ( Σ , £ reί 1^1).

The subgroup bB is characteristic in B , hence normal in J?(Σ, £ rel \σx \).

Since -S**(F, / re l I/J) acts trivially on 5 modulo 6, the quotient of

-2*(Σ, a rel \σj) by 65 is a direct product {B/bB) x ^ * ( F , £ rel

Letting Φ be the composite

^ * ( F , / rel |

B/bB x GL(m, Z/6)

completes the proof of Lemma 4.3.4.
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We can now complete the proof of Theorem 4.3.2, and hence of The-

orem 4.3.1. Let b > 3 be an integer divisible by the order of all torsion

in the finitely generated abelian group K. For each /, write ^ for

^ ( Σ ^ r e l F r t Σ , . ) ) and let Aέ and Φ : ^ -> (Z/6)r' x GL(mnZ/b)

be the corresponding A and Φ from Lemma 4.3.4. Note that Y[Ai is

central in Π-^/ (because all elements of <5̂  are the identity on
Extending by the identity defines a surjective homomorphism

Let e denote its restriction to Π/Li^/ Since Jz^ has finite index in
βf(Σiσi rel Fr(Σ/)), the image of e has finite index. Now ker(^) C Y\A.,

since any homeomorphism of a Σz which is the identity on <9Σz and is
admissibly isotopic to the identity on Σf. isisotopic (relcίΣ,.) to a product
of Dehn twists about the components of Fr(Σ /). Since the Dehn twists
about the components of Fr(Σ) generate K, it follows that K = e([\ At) =

Now put

ψ = Π ψ / : Π ^ ^ Π(Z/*)Γ' x GL{mi9Z/b).
ι = l z = l i = l

Because of the properties of the Φz given in Lemma 4.3.4, ker(Ψ) n
Π At. = Π bAi. Now Ψ induces a homomorphism from image(e) to
image(Ψ)/Ψ(ker(e)), which carries K onto

Ψ(Π ̂ .)/Ψ(ker(̂ )) = Π AJ^^e) + Π K )

If 6 is chosen so that the least common multiple of the torsion in K di-
vides b , then this induced homomorphism will be injective on the torsion
of K. For if an element of \\Ai is divisible by b, it is either already
trivial in K, or it has infinite order in K. This completes the proof of
Theorem 4.3.2 and hence of Theorem 4.3.1.

Corollary 4.3.5. Let M be a Haken 3-manifold. Then 2P{M) is a
finitely presented virtual duality group of type VFL.

Proof. Since M is Haken, the boundary pattern dM is complete and
useful. Since βf(M, dM) has finite index in βf(M), the result follows
from Theorem 4.3.1.

By a trick, we can easily obtain a relative version of Theorem 4.3.1.
Theorem 4.3.6. Let (A/, m) be a compact orientable irreducible suf-

ficiently large 3-manifold with complete and useful boundary pattern, and
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let S c dM be a submanifold which is the union of some elements of jri.
Then £?(M, m rel S) is a finitely presented virtual duality group of type
VFL. ~~

Proof Form from m a new boundary pattern for M by replacing the
elements which make up S by the closed 2-cells of the cell structure dual
to a fine triangulation of S. There is a deformation retraction from the
space of homeomorphisms that preserve each element of the new boundary
pattern to the space of homeomorphisms that are the identity on S. Apply
Theorem 4.3.1 to the corresponding mapping class group.

Corollary 4.3.7. Let M be a compact orientable irreducible sufficiently
large 3-manifold. Then βf(M rel dM) is a finitely presented virtual dual-
ity group of type VFL.

Proof The 2-cells of a cell structure dual to a fine triangulation of dM
form a complete and useful boundary pattern. Now apply Theorem 4.3.6
with S = dM.

5. The disc complex

Let M be an irreducible 3-manifold with compressible boundary. By
a disc in M we mean a properly imbedded 2-disc (D, dD) c (M, dM).
The disc is essential when dD does not bound a 2-disc in dM. Equiv-
alently, D is not parallel to a disc in dM. Define the disc complex of
M to be the simplicial complex L whose vertices are the isotopy classes
of properly-imbedded essential 2-discs in M, and whose simplices are
determined by the rule that a collection of n + 1 distinct vertices spans
an ^-simplex if and only if it admits a collection of representatives which
are pairwise disjoint. This is a modification of the complex used in [23],
and some of the ideas of this section are derived from that paper.

Let [D] and [E] be vertices of L. Define [D] [E] to be one-half of
the minimal cardinality of dD' ΠdE*, where Df and E1 are isotopic to
D and E , respectively, and intersect transversely.

Lemma 5.1. Let DQ, Dχ, -- , Dn be essential discs in M. Then there

are discs D\ isotopic to Zλ such that for all i' Φ j , Z)| n D1. consists of

[D.] [Dj] arcs.

Proof We may assume that the boundaries of the discs are pairwise
nonisotopic and all lie in a single boundary component F of M. If
χ(F) - 0, then at most one essential simple closed curve in F bounds an
imbedded disc in M, so the result follows. So we assume that χ{F) < 0
and hence F can be given a complete hyperbolic structure. The bound-
aries of the Zλ are essential 2-sided simple closed curves, hence are



MAPPING CLASS GROUPS OF 3-MANIFOLDS 43

isotopic to unique imbedded geodesic loops, which intersect pairwise in
the minimum number of points for any loops in their isotopy classes in
F. Choose a convex Riemannian metric for M. Using Theorem 6 of
[29], these discs are isotopic, fixing their boundaries, to a collection of
discs which are minimal surfaces. These discs cannot intersect in simple
closed curves, so Lemma 5.1 is proved.

As a special case, we have
Lemma 5.2. Let {v0, v{, ,υn] be a collection of distinct vertices

in L. If for each i φ j , υi and v. bound a I-simplex in L, then

{υ0, υ{, ,vn} spans an n-simplex in L.

Proof Since vt vjf = 0 for all / and j , Lemma 5.1 implies that
representatives for the vertices can be chosen to be disjoint.

Theorem 5.3. Let M be an irreducible 3-manifold with compressible
boundary. Then the disc complex L of M is contractible.

Proof Since L is a CW complex, it suffices to prove that the homotopy
groups are trivial. Choose as basepoint a vertex kQ . Let f:Sq-*L, q >
0, be any map carrying the basepoint of S9 to k0 . We may assume that
/ is simplicial with respect to some triangulation K of S9 . Define the
complexity of the pair (/, K) as follows. Let Z > 0 denote the nonnegative
integers. For / > 0, define C z (/, K) to be the number of vertices v e K
such that f(v) ko = i. The complexity C ( / , K) is the element

(••• , C 2 ( / , K) , C{ (/, K) , C o ( / , K)) e £ Z^o.
/=oo

The complexities are ordered lexicographically.
If C z(/, K) = 0 for all / > 1, then Lemma 5.2 shows that the image

of / lies in the closed star st(fc0) and hence / is nullhomotopic. So
we assume that C ^ / , K) = 0 for all / > n and that Cn(f,K) > 0
for some n > 0. Choose a vertex υ e K such that f(v) k0 = n. Let
υ{, v2, , υs be the vertices in K adjacent to v . Choose representatives
Z)z for f(υ.), D for f(υ), and Eo for the basepoint k0 so that the
collection {D{, D2, , Ds, D, EQ} satisfies the conclusion of Lemma
5.1. Then each D( is disjoint from D, and discs representing vertices
that are adjacent in st(τ ) are disjoint.

Since n > 0, D is not disjoint from EQ. Consider an arc of their
intersection a which is outermost on EQ. There is a disc B C EQ such
that dBCaUdEoinB contains no other components of D n Eo.
The boundary of a regular neighborhood N of D u B consists of three
properly-imbedded discs, one of which is parallel in N to D and the other
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two having fewer arcs of intersection with Eo than D had. At least one
of these two discs must be essential (in fact, both are when dD and dE0

intersect minimally) and an essential disc obtained in this way is said to
result from surgery on D along B.

Suppose for now that B n (U/=i D ) is empty. Let D1 result from
surgery on D along B. Now D1 is disjoint from D and from all D{

(it may be isotopic to some D.) so Lemma 5.2 implies that L contains
the join [£>'] * st([Z>]). Let g: K —• L be the simplicial map defined on
vertices by g(w) - f(w) if w Φ v and g(v) = [£)']. Since L contains
[D1] * st([Z)]), g is homotopic to / . Since [£>'] [EQ] < [D] [Eo], we have
C(g,K)<C(f,K).

Suppose now that B n (U/=i^ z) is nonempty. Let β be an arc of
intersection of B Γ\Dk which is outermost in B and contains no arc of
intersection of any D. which is disjoint from Dk (note that β may still
intersect an arc of some D.Π B). Let D'k result from surgery on Dk

along the disc in Eo cut off by β. Construct a subdivision K1 of K
by adding the barycenter υ0 of the simplex {[D], [Dk]) as a vertex (i.e.,
replace each simplex of the form ([D], [Dk], w{, w2, , ιt;Γ) by the two
simplices ([£>] 9υ0,wl9w2, - ,wr) and (v0, [Dk] ,w{,w2,- , ι/;Γ)).
Define the simplicial map / ' : Kf' —• L on vertices by /^(v0) = [β[] and
f(w) = f(w) for all other vertices. Since D'h is disjoint from D and
from all the Dέ that were disjoint from Dk, the join [D^]*st(([/)], [Dfc]))
is contained in L, and therefore / is homotopic to / . Now C ( / , K1) >
C(f, K), because we have added the new vertex vQ mapping to [Dk],
but [D'k] - [EQ] < [Dk] - [EQ] < n , since n was maximal, so C m (/ / , K1) =
Cm(f9 K) for all m > n , and the discs that represent the images of the
vertices of sίκ>{v) in L have fewer arcs of intersection with B than
before. Repeating finitely many times, we obtain a subdivision K" of K
and a simplicial map f": K" —• L homotopic to / so that Cm{f", K") =
Cm(f, K) for m> n , and int(2?) is disjoint from the representative discs
for the images of the vertices of stκn(v). Now, surgery on D along 5
yields as above a simplicial map g: K" —• L homotopic to / such that
C m ( * , * " ) = C m ( / , ί ) = 0 f o r m > « and Cn(g, K") < Cn(f, K),
hence C(^, A"") < C ( / , AT). Induction completes the proof.

For use in §8, a couple of variations are needed. Define the nonsepa-
rating disc complex ll to be the full subcomplex of L spanned by the
vertices whose representatives do not separate M (a collection of discs
representing a simplex of Lf may separate M it is only required that
each individual disc in the collection is nonseparating).
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Theorem 5.4. l! is contractible.
Proof. The proof is the same as the proof of Theorem 5.3. The only

observation necessary is that when surgery is performed on a nonsepa-
rating disc, at least one of the two discs that result from the surgery is
nonseparating.

Theorem 5.5. Let V2 be the orientable handlebody of genus 2, and let
([D]) be a vertex of the nonseparating disc complex Lf of V2. Then the
link of ([D]) in L1 is contractible.

Proof The link of ([£>]) is the full subcomplex of l! spanned by the
vertices represented by discs that are disjoint from and not parallel to D.
The proof that this 1-complex is contractible is the same as the proof of
Theorem 5.3. The only observation necessary is that when surgery is per-
formed on a nonseparating disc which is disjoint from and not parallel
to D, at least one of the two discs that result from surgery is nonsepa-
rating and not parallel to D. This is a special property of the genus 2
handlebody.

6. Mapping class groups of products-with-handles

Let V be an orientable product-with-handles; that is, a connected man-
ifold which can be constructed from the product of a (not necessarily con-
nected) compact orientable aspherical 2-manifold B by forming B x I
and then attaching a finite number of 1-handles to B x {1}. These are
extensively studied in [3], [28].

A handlebody is the special case of a product-with-handles where each
component of B has nonempty boundary. We allow the set of 1-handles
to be empty, so another special case is that of the product of a closed
connected surface with / .

The component of d V which has nonempty intersection with B x {1}
is denoted by F. It will be compressible except when V is the product
of a closed surface with / . The rest of the boundary of V consists of
incompressible components and is denoted by d0 V.

Let GHomeo(F) be the group of orientation-preserving homeomor-
phisms of V which preserve F, whose restriction to <90 V is isotopic to the
identity, and which induce the identity automorphism on H{(V Z/15).
This consists of path components of Homeo(F) which form a normal
subgroup of &(V) denote by &{V).

Theorem 6.1. Let V be a product-with-handles. Then 3?{V) is finitely
presented and of type FL.
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The proof will occupy the remainder of this section.
Lemma 6.2. &(V) is torsion-free.
Proof. Suppose (g) e &{V) has finite order, and suppose for now that

V is a handlebody. Choose a basis {aχ, a2, , a 9 bx, b2, -- , bg} for
Hχ(F\ Z/15) so that the intersection number ^ b is equal to <$Γ and
all aϊ αy. = bi -b. = 0, so that all ft/. equal 0 in Hχ{V\Z/l5), and so
that {aχ, a2, , ag) is a basis for Hχ(V\Z/\5). Since # | F extends to
V, the matrix A of (g\F)+ on Hχ{dV;Z/\5) \ s the form

For all i and j , we have δij = a{ b = A(ai) A(Z?7) = (0. + Σnkbk)
A(6) ^ ( Z ) T h i s implies that A ^ ) = bj and therefore Y = lg . It

5follows that g3 induces the identity on Hχ (d V Z/3), and ̂ 5 induces the

identity on Hχ(dV Z/5). Since (g | a κ ) has finite order, a result of Serre

[34] (see Corollary 4.15.15 of [41]) shows that (g3\dV) = (gs\dV) = {ldV),

s o ( g \ d V ) = {loV)
When d0V is nonempty, choose a basis for /^(i 7) which is a union of

bases from the incompressible boundary components of V together with a
basis as above for the part of F , if any, that bounda a handlebody portion
of V. The rest of the argument is similar to the handlebody case. This
completes the proof of Lemma 6.2.

The proof of Theorem 6.1 will use the following result, for which there
are variations and generalizations due to many authors. Convenient refer-
ences for this version are [5, 35].

Theorem 6.3. Suppose a group Γ acts cellularly on a contractible CW-
complex L. If the 2-skeleton of L/T is finite, the stabilizers of the 0-cells
of L are finitely presented, and the stabilizers of the 1-cellsofL are finitely
generated, then Γ is finitely presented. If L/T is finite, and the stabilizer
of each cell of L is of type FL, then Γ is of type FL.

From §5, the disc complex L{V) is a contractible simplicial complex
on which &(V) acts simplicially.

Lemma 6.4. The quotient L(V)/&(V) is finite.
Proof. Since &(V) has finite index in the subgroup of &{V) con-

sisting of mapping classes whose restriction to do(V) is isotopic to the
identity, it suffices to show that up to homeomorphism fixing dQ V, there
are only finitely many collections of disjoint pairwise nonisotopic essential
compressing discs in V. One proof of this proceeds as follows. View
V as a 3-ball B to which 1-handles and product I-bundles over closed
connected surfaces have been attached. An essential compressing disc is
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called "simple" if it is contained in B . Up to homeomorphism (rel<9QF),
there are only finitely many simple discs. Use "slide" homeomorphisms
as in [28, Lemma 3.1.1] to move a disc in a given collection to one of a
finite number of choices of simple disc. This can be done so as to fix d0 V
and also any finite collection of discs contained in d V. Each component
of the result of cutting V along the simple disc is a product-with-handles
which contains fewer discs of the collection. By induction, there are only
finitely many such collections up to homeomorphism fixing the incom-
pressible boundary components and the copies of the cut-open discs in the
boundary, and the result follows.

A second approach is to establish an isomorphism of the set of collec-
tions of discs modulo the action of ^(V rel d0V) with a set of weighted
graphs whose edges represent the discs in the collection and whose vertices
represent the products-with-handles that result from cutting V along these
discs. This approach is used in [10].

We will prove Theorem 6.1 using Theorem 6.3 and an induction that
will establish that the stabilizer of each simplex of L is finitely presented
and of type FL. Let σ = ([Do], [D{], , [Dn]) be an arbitrary ^-simplex.

Proposition 6.5. The natural homomorphism &(V,D0,Dl9 ' ,Dn)

—• &(V) is an isomorphism onto the stabilizer of σ.

Proof. The proof begins with a technical lemma.

Lemma 6.6. Let (h) e &(V), and let D be an essential compressing
disc in V.

(a) If h(D) is disjoint from D, then h(D) is isotopic to D.
(b) If h(D) = D, then h does not interchange the sides of D.

Proof of Lemma 6.6. Suppose h(D) is disjoint from D and not iso-
topic to D. If D separates V, then Duh(D) separates V into three
components; since D and h{D) are not parallel, each component must
have nonvanishing homology. But h must move one of these components
to be disjoint from its interior, which is impossible since h induces the
identity on Hχ{M\ Z/3). Suppose that D is nonseparating. If Duh(D)
does not separate, then there is a loop in V which intersects D once and
is disjoint from h(D), but this loop represents an element of Hχ(V Z/3)
which is not fixed by h. If D U h(D) separates, then each component
of the complement has nontrivial homology so must be preserved by h.
But then a loop which intersects each of D and h(D) once is carried to
a loop which intersects each with the opposite orientation, again a con-
tradiction. This completes the proof of (a). Part (b) is easily proved by
similar considerations.
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To prove Proposition 6.5, we first argue that the homomorphism is
injective. Suppose that (A) e &(V, DQ, Dχ, , Dn) and that there is
an isotopy H from A to the identity homeomorphism. We must show
that H may be chosen to preserve each Zλ. Using Lemma 6.6(b), we
may assume that A restricts to the identity map on each Zλ. For each /,
choose a basepoint υ. e <9Zλ , and let τ be the trace at v. of the restriction
of H to F. Now A# must induce conjugation by τ. on π{(F, υ(), and
since A^Z),-) = <9Z)Z, it follows that τz is in the centralizer of (<9Zλ) in
πχ(F, v.). If F is not a torus, then τ/ must be a power of (<9Z)Z ) if
F is a torus, then V is a solid torus and the isotopy may be rechosen
to achieve this condition. By properties of surfaces, this implies that H
can be deformed to preserve dDi for 0 < i < n. Now an application
of Laudenbach's theorem stated in §4.1 yields an isotopy from A to the
identity preserving the Zλ .

Clearly the image of the homomorphism lies in the stabilizer.

Suppose that (A) is in the stabilizer. We will argue by induction on the

number of discs that A is isotopic to a homeomorphism that preserves

each Dt. For one disc this is clear. Suppose there are k +1 discs. Lemma

6.6 shows that h(D.) is isotopic to D{ for each /. By induction, we may

assume that A(Z)z) = D{ for 0 < i < k. Let Ff = F - \J^~o

ι <9Zλ. The

loop h{dDk) lies in Ff and is isotopic in F to dDk but not to D{ for

0 < i < k. Therefore it is homotopic in Ff to dDk , and therefore

isotopic in Ff to dDk . Using irreducibility of M-\J^~Q Dt, we find that

h(Dk) is ambiently isotopic to Dk keeping all Dι,, 0 < / < k , fixed. This

completes the proof of Proposition 6.5.
We can now begin the induction that will prove Theorem 6.1. The in-

duction will be on the number of indecomposable factors in a free product
decomposition for π{(V). If V is a 3-ball then &(V) is trivial. If V
is the product F x / , where F is a closed surface of positive genus, then
using [39] the restriction &(F x /) -+ &(F x {0}) is an isomorphism. As
discussed in §2, the latter group is finitely presented and of type FL. So
we shall assume that

(1) F is compressible.
(2) For any product-with-handles W such that the free product decom-

position of πx(W) has fewer indecomposable factors than that of n{(V),
the group S/(W) is finitely presented and of type FL.

In order to be able to apply Theorem 6.3 to the disc complex of V,
it remains to show that for each simplex σ = ([DQ], [D{], , [Dn]) of
L, the group &(V, Do, Dχ, , Dn), which we have identified with the
stabilizer of σ , is finitely presented and of type FL.
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Let Wχ,W2, " , Wκ be the components of V cut along the discs Zλ .
Each W. is a product-with-handles. Each disc splits into two copies, and
we denote by Dι.χ, D{ 2 , , D{ n the copies that lie in W these must
all be contained in a single component F. of dW{. By Lemma 6.6, an
element of &{V, DQ, Dχ, , D J cannot permute the Wt nontrivially,
so we have an exact sequence

i-κ^(r,2>0,zv . ,Dn)

i=\

Now each element of K is representable by a homeomorphism which is
supported in a neighborhood of lj"=o Ό , so K is generated by Dehn
twists about the D.. These twists have disjoint support, so K is abelian.
By Lemma 6.2 and Proposition 6.5, ^ ( K , Z>0, Z>j, , Dn) is torsion
free, hence K is finitely generated free abelian. So it remains to prove
that each <§(Wi,Όi p ^ . 2 , , 5 ^ ) is finitely presented and of type
FL.

Let Ei j denote the center of D/ .. It is clear that

We have the following fibration:

GHomeo (wi,Ei x, - , Eι!>f| ) C GHomeo (Wt)

I
Imbeddings ({£,. ,, , £, „ } , F;

Letting ^ ( i ^ ) denote the pure braid group on 5 strands for the 2-
manifold Fi, we obtain from this fibration an exact sequence

π, (GHomeo

By induction, ^{W^ is finitely presented and of type FL. So it suffices
to show that the quotient of 3&{F?) by the image of π1(GHomeo(W^)) is
finitely presented and of type FL.

We must recall a few fundamental facts about braid groups. Let Qr be
a collection of r distinct points in a compact manifold M, and let

This space results from removing a subcomplex from the finite complex
Π/=ί M, so is homotopy equivalent to a finite CW-complex. The pure
braid group 3SS{M) is equal to π,(C0 s) and hence is finitely presented.
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Suppose first that F. is not a 2-sphere or torus. Then π1(GHomeo(W^))
is trivial. Moreover, by [8, Corollary 2.2], CQ s is aspherical and hence
&S{F.) is of type FL. Suppose Ft is a torus. Then by [8, Theorem 4] there
is a homeomorphism of CQ s with Ft x C{ s_χ which is given explicitly
and shows that the homomorphism

π, (Co >/)

is an imbedding onto the factor π^F^ in the product π{(C0 s) =
π\(fi) x π\(c\ 5_i) Hence the quotient of ^{Ft) by the image of

π1(GHomeo(//)) is isomorphic to πι(Cι s_{). By [8, Corollary 2.2],

C{ s_{ is aspherical so πι(Cι s_{) is of type FL. Finally, suppose Ft = S2.
This time we use the fibration

GHomeo (W. rel Ft) c GHomeo (w., E. {, E.>2,

Because Wt is a 3-ball, GHomeo(ί^ rel Ft) is contractible and the restric-

tion fibration/? induces an isomorphism from <&(Wχ:, Eι, χ, Ei 2, , Eχ, n )

to ^ ( F ; , E χ, Et 2, '- , E. n). The latter is a torsion-free subgroup of

ΓQ' , so is finitely presented and of type FL (see §2). This completes the
proof of Theorem 6.1.

7. Mapping class groups of 3-manifolds with compressible boundary

We begin by recalling from [3], [28] some machinery for working with
homeomorphisms when the boundary is compressible. If F is a compact
compressible boundary component of an irreducible 3-manifold M, then
there is a neighborhood V of F in M satisfying the following properties:

1. V is a connected codimension-zero submanifold of M such that
V C\dM = F and dV - F consists of incompressible surfaces in the
interior of M.

2. V is a product-with-handles obtained from the product (dV-F)xI
by attaching 1-handles to (dV - F) x {1} .

3. If h is a homeomorphism of M such that h(F) = F, then h is
isotopic to a homeomorphism h' of M such that h'(V) = V.

4. If h{ and h2 are isotopic homeomorphisms of M such that hx(V) =
V and h2(V) = V, then hχ is isotopic to h2 through homeomorphisms
that preserve V.
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Statements 3 and 4 can be given more succinctly as the assertion that

9 V) —• %*(M, F) is an isomorphism [28, Theorem 4.1.3]. Conse-
quently, %f{M, V) is isomorphic to a subgroup of finite index in βf(M).

We continue to denote dV - F by d0V.
Theorem 7.1. Let M be a compact irreducible 3-manifold with non-

empty boundary. Then £f(M) is a finitely presented group of type VFL.
Proof. The proof proceeds by induction on the number of compressible

boundary components of M. If dM is incompressible, then Corollary
4.3.5 gives the result. Otherwise, choose a compressible boundary compo-
nent F of M and an incompressible neighborhood V of F . Denote the
closure of M - V by M'.

Let PHomeo(Af, V) denote the subgroup of Homeo+(Af, V) consist-
ing of all h such that for every boundary component G ofM, h(G) = G
and h\G induces the identity automorphism on H{(G\ Z/Ί5). The path
components of PHomeo(Λf, V) form a subgroup £P(M) 3d (M) of finite
index in &(M, V).

Every orientation-preserving homeomorphism of d0 V extends to V,
and it is not difficult to see that the restriction PHomeo(Af, V) —•
Homeo(Λf') has image precisely PHomeo(M/), over which it is a fibra-
tion with fiber GHomeo(F rel dQV). From this fibration, we obtain the
exact sequence

(Homeo ( M ' ) ) -> 9 (V rel d0V) -> 3° (M, V) -> ̂  ( A / ) ^ 0.

By induction applied to each component of Mf, the group 3°(M') is
finitely presented and of type VFL. It remains to show that

&{V rel a0F)/image(π ι(Homeo(M/)))

is finitely presented and of type FL.
Recall that πx{Yiomto(M')) is free abelian. The image of each gen-

erator in &(Vreld0V) is a collection of simultaneous Dehn twists about
all boundary components of a component M[ of M1 which is Seifert
fibered, such that the traces are all equal to a generator of the center of
nx(Nf[). (If Aί[ is homeomorphic to Sι x Sι x / , then it will contribute
two generators.) Now &(V rel d0V) is a central extension

1 -> π{ (Homeo (d0V)) -+ & (Vreld0V) -+&(V)^> 1.

The image of 7r1(Homeo(M/)) lies in ^(HomeoίdQK)), so we have an
extension

1 -> π{ (Homeo (d0V)) /image (TΓJ (Homeo ( A ^ ) ) )

-^ ^ ( F rel a 0F)/image (πj (Homeo ( A ^ ) ) ) - > ^ ( F ) ^ 1.

π{ (
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By Theorem 6.1, &(V) is finitely presented and of type FL, while the
kernel in this exact sequence is finitely generated free abelian. Therefore
S?(V rel 30K)/image(π1(Homeo(Af/))) is finitely presented and of type
FL. This completes the proof of Theorem 7.1.

8. The mapping class group of the genus 2 handlebody

Theorem 8.1. Let V be the orientable handlebody of genus 2. Then
is a virtual duality group of dimension 3.

The proof, which occupies the remainder of this section, is based on
a theorem of R. Kramer which describes β?+(V) as a free product with
amalgamation. In order to state that theorem, let {Dχ, D2, £>3} be a set
of disjoint essential 2-discs in V whose union separates V into two 3-
cells; these discs are pairwise nonisotopic and individually nonseparating.
Such a collection is called a marking in [23].

Theorem 8.2. The mapping class group £?+(V) is a free product with

amalgamation J^+(V,D{uD2) V + ( K , D 1 U D 2 , D 3 ) ^ ( F '
 Dι UD2 U Z ) 3 )

Theorem 8.2 is proved in [23]. Because that paper is unpublished and
not readily available, we outline a proof here. It is essentially the proof
given in [23], but adapted to the machinery we have developed in §5 of
the present work.

Proof of Theorem 8.2. Let ll be the nonseparating disc complex de-
fined in §5. Since V has genus 2, l! is 2-dimensional. By Theorem 5.4,
ll is contractible. Let K be the first barycentric subdivision of ll. For
each vertex of K that is a vertex of ll, the star is homeomorphic to its
star in ll, hence its link is contractible by Theorem 5.5. Therefore the
1-complex T formed by removing all of the open stars of the vertices in
K that are vertices of ll is contractible. It is invariant under the action
of^(F).

Each edge of T has one endpoint which represents the isotopy class
of a marking and one endpoint which represents two of the discs in that
marking. It is not difficult to see that any two markings are equivalent
under an orientation-preserving homeomorphism, and that the homeo-
morphisms that preserve the marking can achieve any permutation of the
three discs in the marking. It follows that the quotient of T by the action
of ^ . ( F ) is a single edge. To fix notation, let Bx = ([D{], [D2]) and
B2 = ([/),], [D2], [D3]). Then (B{, B2) is an edge of T. Using Proposi-
tion 6.5, we identify the stabilizers of (Bχ), (B2), and (Bχ, B2). By the
theory of groups acting on trees due to Bass and Serre [36], we obtain a
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free product with amalgamation decomposition

*+<Y) =*+ (V, Dx UD2) *r(y.DiUDjUDitDi[jDi)X'+ (V, Dx UD2UD3)

= ^+ (V,Dι UD2) *r{VtDιUD2tDi) ^ (V, Dχ UD2UD3).

This completes the proof of Theorem 8.2.
Recall that &{V) is the subgroup of ^ ( F ) that acts trivially on

H{ (V Z/15). &{V) is a normal subgroup of finite index, and is torsion-
free by Lemma 6.2.

For simplicity of notation, write G = &{V), A = &+(V, Dχ U D2),
C = ̂ ( F , Dx UD2, D3), and B = &+(V, D{UD2UD3).

Lemma 8.3. (a) GnC is isomorphic to Z x Z x Z.
(b) GnB is isomorphic to Z x Z x Z.
(c) GnA is a duality group of dimension 3.
Proof. For (a), Lemma 6.6 shows that any element of G Π C must

preserve each Dt and cannot reverse the sides, hence any element of G
is isotopic to a homeomorphism supported in a neighborhood of \j]=ι Di.
Therefore the Dehn twists about these three discs generate G. The group
they generate is isomorphic to Z x Z x Z this is proved by restricting
to 9K. Clearly G n B = G Π C and (b) is proved. For (c), split-
ting V along Dχ u D2 induces a surjective homomorphism from Gf)A
to a subgroup of finite index in ^+(D3, Dχ χ, D{ 2, D2 {, D2 2 ) , where
D{ j , Dj 2 , Z>2 j , and Z>2 2 are disjoint 2-discs in the boundary of the

3-ball D3. This is isomorphic to the orientation-preserving mapping class
group of the 2-sphere fixing four points. By [14, Theorem 4.1], this is a
virtual duality group of dimension 1. The kernel of the homomorphism is
the subgroup of GnA generated by Dehn twists about D{ and D2 , hence
is isomorphic to Z x Z. Therefore G Π A is a duality group of dimension
3. This completes the proof of Lemma 8.3.

Regard ^+{V) = A *c B as the fundamental group of the graph of
groups having one edge with edge group C and two vertices with vertex
groups A and B. Now G is the fundamental group of a graph of groups
Γ which is a regular covering of this one-edge graph. By Lemma 6.2, G
is torsion free. The restriction from βf(V) to %*{dV) is easily seen to
be injective. From [14, Theorem 4.1], %*(UV) is a virtual duality group
of dimension 3, hence the cohomological dimension of any torsion free
subgroup of β?(V) is at most 3.

Since G is normal, every edge group of Γ is isomorphic to GnC =
Z x Z x Z and every vertex group is isomorphic either to GnA or to
GnB, hence each vertex group is a duality group of dimension 3. Induc-
tively applying [1, Proposition 9.16(a)] shows that G is a duality group
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of dimension 3, hence β^(V) is a virtual duality group of dimension 3.
This completes the proof of Theorem 8.1.

9. Calculations of virtual cohomological dimension

Denote the virtual cohomological dimension of a group G by dim(G).
In Lemma 3.1.1, we gave d i m ( ^ ( F , /)) for all 2-manifolds of finite type
with compact boundary. In this section we will calculate the virtual coho-
mological dimension of the mapping class groups for many 3-manifolds.

We will first treat the case of compact orientable irreducible sufficiently
large 3-manifolds with incompressible boundary (actually, more generally,
the case when M has a complete and useful boundary pattern ^ recall
from §3.1 that dM is incompressible exactly when the particular complete
boundary pattern dM is useful). The first three propositions handle the
extreme cases when the characteristic submanifold is all of M (i.e., when
M is fibered) or when it is empty; in the fibered case the dimension of the
mapping class group is determined from results of §3, while in the case of
empty characteristic submanifold the mapping class group is finite, by a
theorem of Johannson, so it has dimension 0. The main result, Theorem
9.4, gives a complicated formula for calculating dim(^(M, ^ ) ) . Recall
from Lemma 4.2.2 that (apart from the exceptional case when M has a
Sol structure) there is an exact sequence

9 Σχ 9 ... 9 Σn 9 ̂  _> J J & ^ ί 9 ^ ; F r ( Σ f )

where Jf(M, Σ{, , Σ^, j2l) is isomorphic to a subgroup of finite
index in X ( M , ^ ) , K is the finitely generated abelian subgroup of
^(M, £|) generated by Dehn twists about the components of the frontier
of the characteristic submanifold Σ, and for each component Σf. of Σ,
S'{Σi, σi Fr(Σ/)) is the subgroup of ^ ( Σ z , σ^ consisting of the mapping

classes whose restrictions to Fr(Σf.) are isotopic to the identity. The virtual
cohomological dimension (i.e., the rank) of K is calculated in Lemma 9.5;
one takes the abstract free abelian group generated by a set of Dehn twists
about the components of the frontier of Σ which generate K, then divides
out by the relations which derive from the circular isotopies of the comple-
mentary pieces. In Lemma 9.6, the dimensions of the ^ ( Σ z , σz ; Fr(Σz ))

are calculated. In the I-bundle case, this subgroup has finite index in

/ , σf ), so from §3.2 its dimension equals ά\m(β?(Fi, ft)), where Fi
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is as usual the base surface of the I-bundle. The Seifert-fibered case is re-
duced, using the exact sequence of Theorem 3.5.2, to calculating the rank
of the abelian group ^(Σi, ^ Fr(Σ )) n ^"°(Σ., σ^ . This is the group

generated by vertical Dehn twists excluding those about vertical annuli
with one boundary component in a torus component of Fr(Σ /), so can be
expressed, using the correspondence of Lemma 3.5.3, in terms of a ho-
mology group of the base surface. Combining the two lemmas gives the
formula in Theorem 9.4.

In the remainder of the section, we obtain some estimates for the virtual
cohomological dimension of the mapping class groups of products-with-
handles (see §6), including the special case of handlebodies. If V is a
product-with-handles, then the restriction %?(V) —> β?(dV) is injective,
so Harer's calculation of dim(βΓ(F)) (see §2) gives upper bounds for
d i m ( ^ ( F ) ) . Lower bounds can be obtained inductively by building up a
subgroup 2?{y, D) as a sequence of extensions, where D is a compress-
ing disc. Since ^ ( F , D) is a subgroup of <%*(V), by Proposition 6.5,
this provides the lower bounds for d i m ( ^ ( F ) ) .

For I-bundles, we have the following immediate consequence of Propo-
sition 3.2.1.

Proposition 9.1. Let (Σ, g) be an irreducible I-bundle over (F, f).

Then dim(JT(Σ, g)) = dim(J^(F, / ) ) .

Suppose now that (Σ, σ) is Seifert fibered over (F, / ) . Let & be

the exceptional points in F . Define Ff to be F - & and regard / as a

boundary pattern on F1.
Proposition 9.2. Let (Σ, σ) be a compact orientable irreducible suffi-

ciently large ^manifold which is Seifert fibered over (F, / ) .

(a) Let Σ be an Sx-bundle over the disc. If some component of σ_ is an
annulus, then d i m ( ^ ( Σ , g)) = 0, otherwise d i m ( ^ ( Σ , g)) = 1. ~

(b) Let Σ be an Sι -bundle over the annulus. If both components of dΣ
contain an element of σ_ which is an annulus, then d i m ( ^ ( Σ , g)) = 2,
otherwise d i m ( ^ ( Σ , gfj = 1.

(c) Let Σ be an Sι-bundle over the torus. If the Euler class is zero, then
dim(;Γ(Σ)) = 3, otherwise dim(^(Σ)) = 1.

(d) Let Σ be an Sx-bundle over the Klein bottle. If the Euler class is
zero, then dim(^(Σ)) = 1, otherwise dim(X(Σ)) = 0.

(e) Otherwise, dim(^(Σ, g)) = τank(H{ {F, dF)) + dim(^(F ;, /)) .

Proof. Let σχ be the set of components of dΣ-\g\, so that gVσ{ is a

boundary pattern for Σ. Now ^ ( Σ , σ_ U σχ) is a subgroup of finite index
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in W(Σ9 σ_) (the subgroup that permutes the elements of σχ trivially),

so upon replacing σ by σ_ U σ{, we may assume that g is a complete

boundary pattern.
If Σ is a solid torus and σ_ does not contain an annulus, then a Dehn

twist about the essential compressing disc generates an infinite cyclic sub-
group of finite index, while if g does contain an annulus, the mapping
class group is finite (this can be proved by geometric methods, or by use
of Theorems 3.5.1 and 3.5.2 and Lemma 3.5.3). This gives (a). Parts
(b), (c), and (d) are Propositions 3.4.1, 3.4.3, and 3.4.4 respectively. If
Σ is the Sι-bundle over the Mόbius band, then Proposition 3.4.2 shows
d i m ( ^ ( Σ , £)) = 0, which agrees with the value in (e). If Σ fibers over
the 3-sphere with three exceptional orbits, then by Proposition 3.4.5, its
mapping class group is finite. Since the mapping class group of the thrice-
punctured sphere is finite, the formula in (e) yields the correct dimension.
If M is the Hantsche-Wendt manifold (see Theorem 3.5.1) then β?(M)
is finite [6] and the value given by (e) is again correct. For the remainder
of the proof, we may assume that Σ is not one of the exceptions 5.1.1-
5.1.5 of [21], that Σ is not an S*-bundle over the annulus, Mobius band,
torus, or Klein bottle, and that Σ is not the Hantsche-Wendt manifold.
In particular, ^ ( Σ , g) = J^f{Σ, g), by Theorem 3.5.1.

Recall the groups ^ ° ( Σ , g) and βf(F, /) defined just before Theo-

rem 3.5.2. Now ^ ° ( Σ , σ) is isomorphic to H{ (F, dF), by Lemma 3.5.3,

while %f*{F, /) is isomorphic to a subgroup of finite index in %?{F*, / ) ,

hence is a virtual duality group. These are related by the exact sequence

of Theorem 3.5.2. By Lemma 3.5.9, there is a subgroup (hence a normal
subgroup) of finite index in ^/(Σ, σ) which intersects <^°(Σ, σ) in a
finitely generated free abelian group, and applying Lemma 1.4(c) to this
subgroup shows that

dim ( r (Σ, £)) = dim ( r 0
 (Σ, £)) + dim ( r* (F , /))

= rank (Hx (F, dF)) + dim (& (F' , /))

This completes the proof of Proposition 9.2.
When the characteristic submanifold of (Af, m) is empty, βf(M9 n£)

is finite by [21, Theorem 27.1]. Therefore we have ~



MAPPING CLASS GROUPS OF 3-MANIFOLDS 57

Proposition 9.3. If the characteristic submanifold of (M, ζj£) is empty,
then dim(J^(M,m)) = 0. ~

We now require one more definition. Let (Σ /, σz) be a component of

the characteristic submanifold of a 3-manifold, and let (Ft, ft) be the

orbit surface. Denote by Ft the 2-manifold that results from capping
off with a 2-disc each boundary component of dFt that is the image of
a component of Fr(Σ/) that is a torus. The next theorem includes the
remaining Haken cases.

Theorem 9.4. Let (M, m) be a compact orientable irreducible suffi-
ciently large 3-manifold with complete and useful boundary pattern. Sup-
pose that the characteristic submanifold Σ of (M, m) is not empty and not
equal to M. Let (Σχ, σχ), (Σ 2 , σ2), ... , (Σπ , σn) be the components of

Σ, and let (Sχ, sχ), (S2, s2), .- > (Sm , sm) be the components of the clo-

sure of M - Σ. Let t be the number of components of Fr(Σ) that are tori

and let a be the number that are annuli. Then

dim (^(M9ι£j}=2t + a + k-Σ r a n k (center (π{ (Σ,.)))
i=\

(center (π{ (sλ) J

ι=l

+ Σ
{i\Σi is Seifert fibered}

where k is the number of components of Σ that are homeomorphic to
Sι x Sι x / and contain a component of the frontier of Σ which is an
annulus.

Proof By hypothesis Σ is nonempty and not equal to M in particular
each component of Σ has nonempty boundary.

Suppose first that M is a torus bundle over Sι that admits a Sol struc-
ture. In this case the characteristic submanifold Σ = Σχ = Sι x Sι x I
is a regular neighborhood of a torus fiber, and is Seifert-fibered over the
annulus Fχ = F[, and Sχ is also homeomorphic to Sι x S{ x I. In the
notation of the statement of Theorem 9.4, we have t — 2, a = 0, k = 0,

and τank(Hχ(Fχ, dFχ)) = 0, since Fχ is a 2-sphere. The formula in
Theorem 9.4 yields dim(^(Af, m)) = 0, which agrees with Proposition
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4.1.2. (What is really going on in this case is that the homeomorphism
h defined by performing the monodromy on each torus fiber generates
an infinite cyclic subgroup of finite index in %?{M, Σ), while h is iso-
topic to the identity if Σ is not required to be preserved, so βf(M) is
finite. But h and its power are not fiber-preserving with respect to the
Seifert fibering of Σ, and the formula in Theorem 9.4 only detects those
classes in βf(M, Σ, m) which are fiber-preserving on Σ. Apart from this
exceptional case, these are all the mapping classes.)

From now on, we assume that (M, m) is not one of these manifolds,
and hence by Proposition 4.1.1 that ^ ( M , r a ) = ^ ( M , Σ , ra). By
Lemma 4.2.1, the kernel J^(M, Σ{, Σ 2 , , Σn , m) of the restriction

, Σ { , Σ 2 , , Σn , ffi) -+ & (W^Σ, Fr(Σ))

has finite index, and by Lemma 4.2.2, there is a restriction homomorphism

which is surjective, and whose kernel K is the subgroup generated by
the Dehn twists about the components of the frontier of Σ. Therefore
Theorem 9.4 will be an immediate consequence of the next two lemmas.
The reader may wish to review Example 4.2.4 before examining Lemma
9.5.

Lemma 9.5. The rank of K is

n n

2t + a + k-Σ Γ a n k (center (πj (Σf.))) - ^ rank (center (π{ ί ^ ) ) ] ,

where k is the number of components of Σ that are homeomorphic to
Sι x Sι x I and contain a component of the frontier of Σ which is an
annulus.

Proof For each torus component of Fr(Σ), choose generators zf. and
wt for the fundamental group so that zi represents the fiber and wi

represents a cross section to the fibering. Choose Dehn twists with traces
z/ and wi respectively, supported in a neighborhood of the torus. For
each annulus component of Fr(Σ), choose a Dehn twist supported in a
neighborhood of the annulus. Let K{ be the abstract free abelian group of
rank 2t + a on the chosen set of Dehn twists. Passing to isotopy classes in
%?{M, m) defines a surjective homomorphism from K{ to K . To prove
Lemma 9.5, we will show that the rank of the kernel of this homomorphism
is Σn

i=χ rankΐcentertπ^Σ,))) + Σj={ r anktcenter tπ^ ))) - k .
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Choose basepoints u{ in the interior of the Σ/ and v in the interior

of the Sj. If either Σ{ = Sι xSι xl and some component of Fr(Σ ) is an

annulus, or Σz is an S^-fibered solid torus (in which case the components
of Fr(Σz) must be annuli), defined J2ί(πι(Σi, ut)) to be the subgroup of
π 1 (Σ / , u() generated by the fiber. For all other Σf., define 3?(πγ{Σi9 ut))
to be the center of π{(Σn ut). The rank of 2'(πx(Σi, ut)) equals the
rank of the center of π ^ Σ , , ut) except when Σt = 5 ' 1 x 5 1 x l and some
component of Fr(Σ/) is an annulus, in which case the center has rank 2
while JZ^π^Σy)) has rank 1. This accounts for the term k in the formula
in Lemma 9.5. Define 2?(πχ(Sj, v •)) to be the center of πx(Sj, vj). The
only S whose fundamental groups have nontrivial center are I-bundles
over the annulus or torus (see [21, p. 159]). Observe that the elements
of 5'(7Γ1(Σ|., Mf.)) and 2^{nx{Sj, Vj)) are precisely the possible traces of
admissible circular isotopies (a circular isotopy is an isotopy that starts
and ends at the identity) of Σf. or S.. Define a homomorphism

n m

φ: Π ^ K ft, ut)) x Y[3r(nx (s^v^-^K,
ι=l j=\

on generators by sending x e 2'{π{ (Σ., u^) to the product of Dehn twists
about all the components of Fr(Σ/) such that each has trace homotopic to
x , and similarly for y e 2^(πχ{Sj, v.)). There is an isotopy (rel Fr(Σ/))
from each such product to the identity, whose trace at ut or v. is x or
y. We will complete the proof by showing that φ is injective and has
image equal to the kernel of the homomorphism from Kχ to K .

From an element (xx, , xn, yx, ,ym) of the kernel of φ, one
obtains a circular isotopy of (M, m) whose trace at each ui is xt and
at each v( is yt. Since (M, m) is aspherical, the trace of any circular
isotopy must be central. But the fundamental group of M is centerless,
since M is not Seifert fibered or I-fibered, and therefore φ is injective.

Suppose that w is an element of Kχ that maps to the trivial element
of K. Then w is a product of Dehn twists about frontier components of
Σ that is isotopic to the identity preserving Σ. Let H be such an isotopy.
The traces of H at the basepoints ut and v. yield an element wχ of

MZ/> ui)) x Π7=i- 2 '(π i( 5 !/ ' vj))- A s a homeomorphism of M ,
^ is isotopic to the identity by an isotopy which fixes all basepoints

and preserves each Σf.. It follows that w = wχ as elements of Kχ. This
completes the proof of Lemma 9.5.
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Lemma 9.6. (a) // (Σz , σ^ is an I-bundle, then dim(^(Σz., σy, Fr(Σ-)))

(b) // (Σz , <τ.) is Seifert fibered, then

dim (V fc, q; Fr(Σ/))) =

The group ^ ( Σ / ? <7 F r ^ )) is by definition the normal sub-

group of W(Σi9 σz ) consisting of the mapping classes whose restrictions

to each component of Fr(Σ/) are isotopic to the identity. Suppose first

that Σz is an I-bundle, so F{ = F.. Since the components of Fr(Σ )

are squares and/or annuli, their mapping classes are finite, and therefore

., σ.; Fr(ΣJ) has finite index in ^ ( Σ . , σt). By Proposition 3.2.1,

the latter is isomorphic to ^+{Fi, f t ) , so Lemma 9.6(a) follows. Suppose

that (Σ z, σz) is Seifert-fibered. In Lemma 3.6.2, it is shown that in the

exact sequence from Theorem 3.5.2,

l -><r° (Σ, £ ) -+*/ (Σ, £j ->^* (F,£) - l,

the image of ^ ( Σ z , σi Fr(Σ )) in ^F*(F, /) has finite index. To deter-

mine ^ ( Σ z , σi Fr(Σ.))n^°(Σ |., σ ), consider the restriction of ^ ° ( Σ , σ.)

to the components of Fr(Σ z). The restriction to each annulus is isotopic to
the identity, but the restriction to each torus is a vertical homeomorphism
of the fibered torus, which is a product of Dehn twists about the fiber.
Let Γj, , Tk be the torus components of Fr(Σz), and let B{, , Bh

be their images in dFr Now ^ ( Σ z , σz Fr(Σ z ))Π^°(Σ z , σz) corresponds

to the kernel of the restriction from JFO(ΣZ , σ.) to U^(Ti) Under the

correspondence of Lemma 3.5.3, this restriction becomes

Hl(Ft,dFi)±H0(dFl)-*rtJmlH0(Bl),

where the second homomorphism is projection. The kernel of the ho-
momorphism is isomorphic to Hι(Fi, dF.). This completes the proof of
Lemma 9.6 and hence of Theorem 9.4.

We turn now to the case of compressible boundary. Let {D{, D2, ,
Ds, Eγ, , Er} be a (possibly empty) collection of pairwise disjoint 2-
discs in the boundary of V. Denote by Hs

g r the mapping class group
J ^ ( F , Dχ, D2, - 9DsτelEι\jE2\J'"UEr)

t.We will need the following
lemma, which is a special case of [1, Theorem 5.6].
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Lemma 9.7. Let 1 —• N —• (7 —•(?—• 1 be a short exact sequence

of groups. Assume that N is of type FL, and that Hn{N\ ZN) is Z-free
for n equal to the cohomological dimension of N. If the cohomological
dimension of Q is finite, then άim{G) — dim(iV) + dim(Q).

For the case of handlebodies, we have the following estimate for the
virtual cohomological dimension.

Theorem 9.8. Let V be a handlebody of genus g > 2.

(a) // g = 2, then dim(i/2° 0) = 3, and dim{Hs

2 r) = 4 + 2r + s if
r + s > 0.

(b)Ifg>3, then 3g-2 < d i m ( / 7 ° 0 ) < 4g- 5 , and 3g + 2r + s-2<

dim(Hs

g r)<4g + 2r + s-4 ifr + s>0.

Proof There is a restriction homomorphism from Hs

 r to
D p ί ) 2 , , Ds rel E{ U E2 U U Er). It is not difficult to prove

that this homomorphism is injective: if a homeomorphism of V is the
identity on 9 F , then using irreducibility of V it is isotopic to the iden-
tity on the union of d V and a collection of compressing discs that cut V
into a 3-ball, and the Alexander trick furnishes an isotopy to the identity.
Since

£ &+ (dV - (int (Ex) U U int (Er)) ,

Dχ, D2 , , Ds rel dEχ U U dEr)

Harer's theorem (see §2) provides the upper bounds given in Theorem 9.8.

Since Hs

 r is an extension of Ίl by Hr

g

+S

o, Lemma 9.7 shows that

dim(Hs

g r) = dim(Hr

g

+s

0) + r. Therefore it suffices to consider only the case

when r = 0.
We first consider the case of g = 2. By Theorem 8.1, H20 is a virtual

duality group of dimension 3 .
Let di be a point in the interior of Zλ . Observe that

The restriction fibration from Homeo+(F) to Imb({d{}, dV) yields an

exact sequence

1 - π{ (Imb ({dx} , βK)) - > * ; (K, {^}) -> H°g() - . 1.

Since Imb({rf,}, dV) is homeomoφhic to dV, π ^ I m b ί ί ^ } , 9F)) i s a

duality group of dimension 2. Therefore the exact sequence shows that
^ ( F rel rfj) is a virtual duality group of dimension 5. Inductively, for
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s > 1, we have a similar exact sequence

This time lmb({ds+ι}, a K - { r f p , rfj) is homeomorphic to
{ύfj, , rfy}, so its fundamental group is a free group, which is a
duality group of dimension 1. By induction, J%^(V rel {dχ, d2, , ^})
is a virtual duality group of dimension 4 f s. It follows that
^ ( F , rel{ί/j, , ds+ι}) is a virtual duality group of dimension 4 +
s + 1, which completes the induction and the case g = 2.

Now suppose g > 3. Let D be a nonseparating compressing disc for
V. Let K' be the handlebody of genus g - 1 that results from splitting V
along D its boundary contains two copies Df and D" of D . Obviously,

( / , Z ) 1 , Z ) 2 , •• , Ds rel £>' U

so using induction on g we have

3 # + 1 - s < d i m ( ^ ; ( V ,Dl9D29... 9Dsτel D)).

From the restriction fibration from Homeo + (F, D, Dγ, D 2 , , D5) to
Homeo(D), we obtain an exact sequence

By Lemma 9.7, this shows that the virtual cohomological dimension of
&+{V9 D,Dχ,D2, 9DS) is at least 3g + s - 2. Since (as in Propo-
sition 6.5) &+(V, D9 D{, D2, '- , Ds) is isomorphic to a subgroup of
βf( V, Dχ,D2, '- , Ds), these estimates give lower bounds for dim(Hs

g r).
This completes the proof of Theorem 9.8.

In the next theorem, let V be an orientable product-with-handles which
is not a handlebody. If V is actually a product F x I (with F closed), let
Fχ and F be the boundary components of V. Otherwise, let Fχ, , Fk

be the incompressible boundary components of V, and let F be the com-
pressible boundary component. Denote the genus of F by g. Suppose
that V has (k - 1) + g0 1-handles (so that πχ(V) has g0 infinite cyclic
free factors). Let {Dχ, D2, , Ds, Eχ, , £ r } be a (possibly empty)
collection of pairwise disjoint 2-discsin F . Denote by if* Γ the mapping
class group #+{¥ 9 Dx, D2, ••• , D5 rel Eχ U £ 2 U U Er) \

Theorem 9.9. Let V be an orientable product-with-handles, which is
not a handlebody.
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(a) Suppose V is a product F x I. // g = 1, then dim(i/° 0) = 1. If

2g + r + s>2, then dim(//°?0) = 4 ^ - 5 and ά\m(Hs

g r) = 4g + 2r + s-4

if r + s > 0.
(b) Suppose V is not a product and not a solid torus. Then 4g - g0 -

k + 2r + s-3< dim{Hs

g r)<4g-5.

Proof. Denote the genus of Fi by gi. As in Theorem 9.8, the re-
striction to F is injective on mapping class groups, which using Harer's
theorem (see §2) gives (a) and the upper bound in (b). To obtain the lower
bound in (b), we will induct on g0 . As in the proof of Theorem 9.8, we
may assume that r = 0. Since V is not a handlebody, k > 0.

Suppose that g0 = 0. Let D be a compressing disc such that one
component of the result of cutting V along D is Fk x I the other is
a product-with-handles V1 which has (k - 1) incompressible boundary
components. Let F' be the compressible boundary component of V1

(or the component other than JFj, in case k = 2). The genus of F1

is g - gk. We may choose D so that all the Zλ lie in V'. Now
&+(V rel D) = J^+(Vf rel D)x&+(FkxI rel D). By [14], β^(Fkxlrt\D) =
^+{Fk rel D) ^W+(Fk- int(D) rel dD) is a virtual duality group with Z-
free dualizing module, so Lemma 9.7 and induction give

= dim ( ^ (y', D{, D2 , , Ds rel 2))) + dim ( ^ (F fc x I rel D))

= 4g - k -h s - 2.

As in the handlebody case, this implies that άim(Hs

g 0) >4g-k + s-3.

Suppose now that g0 > I. Let D be a nonseparating disc and let V1

be the result of cutting V along D. The boundary of V' contains two

copies D' and D" of D. By induction on # 0 , we have

, Dl9D2,.- ,DsτelD))

/ , D 1 , £ ) 2 , •• ,DS rel
S

= 4g-go-k + s-2.

As above, this implies that dim(Hs

gQ) > 4g-go-k+s-3 . This completes
the induction and the proof of Theorem 9.9.
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